Online citations, reference lists, and bibliographies.

A Goldstone Theorem In Thermal Relativistic Quantum Field Theory

Christian D. Jaekel, Walter F. Wreszinski
Published 2011 · Physics, Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed.
This paper references
10.1007/BF01654132
Eine Bemerkung zu Clustereigenschaften
D. Maison (1968)
10.1063/1.3372623
On the mixing property for a class of states of relativistic quantum fields
C. Jaekel (2010)
Goldstone’s theorem and related topics
J. A. Swieca (1970)
States and representations in statistical mechanics
N. M. Hugenholtz (1972)
10.1007/978-3-662-09089-3
Operator algebras and quantum statistical mechanics
Ola Bratteli (1979)
10.1002/prop.2190350502
Charges and Symmetries in Quantum Theories without Locality
W. Wreszinski (1987)
10.1016/0370-1573(87)90121-9
Real- and imaginary-time field theory at finite temperature and density
N. P. Landsman (1987)
10.1007/BF01609406
Symmetry conservation and integrals over local charge densities in quantum field theory
M. Requardt (1976)
10.1103/PhysRevD.58.125012
The unmasking of thermal Goldstone bosons
J. Bros (1998)
Spontaneous Symmetry Breaking of Lorentz and (Galilei) Boosts in (Relativistic) Many-Body Systems
M. Requardt (2008)
Decay of Spatial Correlations in Thermal States
C. Jäkel (1998)
10.1007/BF01614209
Stability properties of equilibrium states
R. Haag (1977)
10.1016/c2009-0-19635-6
Fundamentals of the Theory of Operator Algebras
R. Kadison (1983)
10.1007/978-3-662-10018-9_12
Phase Transitions in Quantum Spin Systems with Isotropic and Nonisotropic Interactions
F. Dyson (1978)
10.1007/BF01010937
Energy gap, clustering, and the Goldstone theorem in statistical mechanics
L. Landau (1981)
10.1007/BF01213409
A remark on the cluster theorem
K. Fredenhagen (1985)
10.1016/0370-1573(87)90136-0
Temperature, periodicity and horizons
S. Fulling (1987)
10.1007/BFb0063562
Functional Analysis and its Applications
H. G. Garnir (1974)
10.1007/BF01773346
Conserved currents and associated symmetries; Goldstone's theorem
D. Kastler (1966)
10.1006/aphy.2002.6222
Thermodynamic Properties of Non-equilibrium States in Quantum Field Theory
D. Buchholz (2002)
10.1007/BF01609122
Correlation inequalities in quantum statistical mechanics and their application in the Kondo problem
G. Roepstorff (1976)
10.1007/3-540-33922-1_4
Quantum Dynamical Systems
C. Pillet (2006)
10.1007/BF01454978
Causal independence and the energy-level density of states in local quantum field theory
D. Buchholz (1986)
10.1142/S0129055X92000157
A NEW LOOK AT GOLDSTONE’S THEOREM
D. Buchholz (1992)
10.1007/BF01609060
Linear response theory and the KMS condition
J. Naudts (1975)
10.1175/1520-0493(1873)15[2a:t]2.0.co;2
Temperature
Ruslan Prozorov (1890)
10.1103/PhysRevLett.17.1133
Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models
N. D. Mermin (1966)
10.1142/6896
Thermal Quantum Field Theory: Algebraic Aspects And Applications
F. C. Khanna (2009)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
10.1007/BF01210849
Quasi-particles at finite temperatures
H. Narnhofer (1983)
10.1007/BF01646447
Spontaneous breakdown of symmetries and zero-mass states
H. Ezawa (1967)
10.1016/0004-6981(73)90132-7
The energy gap
G. Foley (1973)
10.1103/PhysRevD.77.104015
Stable cosmological models driven by a free quantum scalar field
C. Dappiaggi (2008)
Statistical Mechanics: Rigorous Results
D. Ruelle (1999)
10.1016/B0-12-512666-2/00078-X
Algebraic approach to Quantum Field Theory
Romeo Brunetti (2004)
Local Quantum Physics: Fields
R. Haag (1996)
10.1007/978-1-4612-0049-9
Mathematical Methods in Physics
P. Blanchard (2002)
10.1007/BF01877542
Bogoliubov inequalities for infinite systems
J. Garrison (1972)
Local Quantum Physics: Fields, Particles, Algebras
R. Haag (1992)
Axiomatic analyticity properties and representations of particles in thermal quantum field theory
J. Bros (1996)
10.1007/BF01645523
Inequalities for traces on von Neumann algebras
M. B. Ruskai (1972)
10.1007/BF02890151
A remark on the goldstone theorem in statistical mechanics
P. A. Martin (1982)



Semantic Scholar Logo Some data provided by SemanticScholar