DOI: 10.1063/1.3526961

# A Goldstone Theorem In Thermal Relativistic Quantum Field Theory

Christian D. Jaekel, Walter F. Wreszinski

Published 2011 · Physics, Mathematics

We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed.

This paper references

10.1007/BF01654132

Eine Bemerkung zu Clustereigenschaften

D. Maison (1968)

10.1063/1.3372623

On the mixing property for a class of states of relativistic quantum fields

C. Jaekel (2010)

Goldstone’s theorem and related topics

J. A. Swieca (1970)

States and representations in statistical mechanics

N. M. Hugenholtz (1972)

10.1007/978-3-662-09089-3

Operator algebras and quantum statistical mechanics

Ola Bratteli (1979)

10.1002/prop.2190350502

Charges and Symmetries in Quantum Theories without Locality

W. Wreszinski (1987)

10.1016/0370-1573(87)90121-9

Real- and imaginary-time field theory at finite temperature and density

N. P. Landsman (1987)

10.1007/BF01609406

Symmetry conservation and integrals over local charge densities in quantum field theory

M. Requardt (1976)

10.1103/PhysRevD.58.125012

The unmasking of thermal Goldstone bosons

J. Bros (1998)

Spontaneous Symmetry Breaking of Lorentz and (Galilei) Boosts in (Relativistic) Many-Body Systems

M. Requardt (2008)

Decay of Spatial Correlations in Thermal States

C. Jäkel (1998)

10.1007/BF01614209

Stability properties of equilibrium states

R. Haag (1977)

10.1016/c2009-0-19635-6

Fundamentals of the Theory of Operator Algebras

R. Kadison (1983)

10.1007/978-3-662-10018-9_12

Phase Transitions in Quantum Spin Systems with Isotropic and Nonisotropic Interactions

F. Dyson (1978)

10.1007/BF01010937

Energy gap, clustering, and the Goldstone theorem in statistical mechanics

L. Landau (1981)

10.1007/BF01213409

A remark on the cluster theorem

K. Fredenhagen (1985)

10.1016/0370-1573(87)90136-0

Temperature, periodicity and horizons

S. Fulling (1987)

10.1007/BFb0063562

Functional Analysis and its Applications

H. G. Garnir (1974)

10.1007/BF01773346

Conserved currents and associated symmetries; Goldstone's theorem

D. Kastler (1966)

10.1006/aphy.2002.6222

Thermodynamic Properties of Non-equilibrium States in Quantum Field Theory

D. Buchholz (2002)

10.1007/BF01609122

Correlation inequalities in quantum statistical mechanics and their application in the Kondo problem

G. Roepstorff (1976)

10.1007/3-540-33922-1_4

Quantum Dynamical Systems

C. Pillet (2006)

10.1007/BF01454978

Causal independence and the energy-level density of states in local quantum field theory

D. Buchholz (1986)

10.1142/S0129055X92000157

A NEW LOOK AT GOLDSTONE’S THEOREM

D. Buchholz (1992)

10.1007/BF01609060

Linear response theory and the KMS condition

J. Naudts (1975)

10.1175/1520-0493(1873)15[2a:t]2.0.co;2

Temperature

Ruslan Prozorov (1890)

10.1103/PhysRevLett.17.1133

Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models

N. D. Mermin (1966)

10.1142/6896

Thermal Quantum Field Theory: Algebraic Aspects And Applications

F. C. Khanna (2009)

10.1007/BF01651541

Stability and equilibrium states

R. Haag (1974)

10.1007/BF01210849

Quasi-particles at finite temperatures

H. Narnhofer (1983)

10.1007/BF01646447

Spontaneous breakdown of symmetries and zero-mass states

H. Ezawa (1967)

10.1016/0004-6981(73)90132-7

The energy gap

G. Foley (1973)

10.1103/PhysRevD.77.104015

Stable cosmological models driven by a free quantum scalar field

C. Dappiaggi (2008)

Statistical Mechanics: Rigorous Results

D. Ruelle (1999)

10.1016/B0-12-512666-2/00078-X

Algebraic approach to Quantum Field Theory

Romeo Brunetti (2004)

Local Quantum Physics: Fields

R. Haag (1996)

10.1007/978-1-4612-0049-9

Mathematical Methods in Physics

P. Blanchard (2002)

10.1007/BF01877542

Bogoliubov inequalities for infinite systems

J. Garrison (1972)

Local Quantum Physics: Fields, Particles, Algebras

R. Haag (1992)

Axiomatic analyticity properties and representations of particles in thermal quantum field theory

J. Bros (1996)

10.1007/BF01645523

Inequalities for traces on von Neumann algebras

M. B. Ruskai (1972)

10.1007/BF02890151

A remark on the goldstone theorem in statistical mechanics

P. A. Martin (1982)