Online citations, reference lists, and bibliographies.
← Back to Search

A Smooth Particle Mesh Ewald Method

U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, L. Pedersen
Published 1995 ·

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors. This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1. Furthermore, efficient calculation of the virial tensor follows. Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy. We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N). For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less.
This paper references
J. Stat. Phys
E Schmidt
10.1016/0010-4655(91)90107-V
A loose-coupling, constant-pressure, molecular dynamics algorithm for use in the modelling of polymer materials
D. Brown (1991)
Chem. Phys. Lett. ͑submitted͒. Acta Crystallogr. Sec. A
G Lambert
10.2307/2153134
An introduction to wavelets
C. Chui (1992)
10.1107/S0567739473000458
Crystallographic fast Fourier transforms
L. F. Eyck (1973)
10.1063/1.465608
The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods
D. York (1993)
10.1021/J100194A059
Computer simulation study of the mean forces between ferrous and ferric ions in water
J. Bader (1992)
J. Mol. Liq
S D Buono
Proc. R. Soc. London Ser. A
W Deleeuw
10.2307/2008489
The Rapid Evaluation of Potential Fields in Particle Systems
L. Greengard (1988)
10.1063/1.467425
How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations
J. Roberts (1994)
J. Chem. Phys. Chem. Phys. J. Chem. Phys
J C Berendsen (1995)
J. Chem. Phys
G Petersen
10.1007/BF02186852
Calculating the pressure in simulations using periodic boundary conditions
E. Smith (1994)
667 ͑1994͒. 18 L. Verlet
J Steinbach
10.1887/0852743920
Computer simulation using particles
R. Hockney (1966)
Comp. Phys. Comm
R Smith
10.1103/PHYSREV.159.98
Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
L. Verlet (1967)
10.1107/S0567739471000998
Accelerated convergence of crystal-lattice potential sums
D. Williams (1971)
10.1016/0009-2614(92)90053-P
Accelerated molecular dynamics simulation with the parallel fast multipole algorithm
J. Board (1992)
Chem
H Shimada
Chem. Chem. Phys. Lett
H Kitchen
J. Chem. Phys
W York
10.1063/1.439486
Molecular dynamics simulations at constant pressure and/or temperature
H. C. Andersen (1980)
10.1002/jcc.540150702
New spherical‐cutoff methods for long‐range forces in macromolecular simulation
P. J. Steinbach (1994)
Acta Crystallogr. Sec. A
E Williams
10.1021/JA00122A034
Toward the Accurate Modeling of DNA: The Importance of Long-Range Electrostatics
D. York (1995)
10.1063/1.468564
MOLECULAR DYNAMICS SIMULATION STUDIES OF A HIGH RESOLUTION Z-DNA CRYSTAL
H. Lee (1995)
Chem. Phys. Lett. J. Phys. Chem
R Reddy
10.1007/BF01030008
Implementing the fast multipole method in three dimensions
K. Schmidt (1991)
10.1002/jcc.540150105
Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations
J. Shimada (1994)
10.1098/rspa.1980.0135
Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants
S. W. de Leeuw (1980)
Proc. Nat. Acad. Sci. 90
H Kitson
10.1016/0009-2614(89)85344-8
The dielectric constant of SPC/E water
M. R. Reddy (1989)
J. Chem. Phys
Chem. Phys. Lett
D L Auffinger
10.1016/0009-2614(82)80028-6
Molecular dynamics with stochastic boundary conditions
M. Berkowitz (1982)
10.1002/ANDP.19213690304
Die Berechnung optischer und elektrostatischer Gitterpotentiale
P. Ewald (1921)
10.1080/00268978800101471
An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles
J. Perram (1988)
10.1080/00268978300102851
Constant pressure molecular dynamics for molecular systems
Shūichi Nosé (1983)
J. Chem. Phys
Saito
10.1002/JCC.540111009
Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water
D. B. Kitchen (1990)
J. Chem. Phys. J. Chem. Phys
E Roberts
10.1080/00268977300102101
Monte Carlo studies of the dielectric properties of water-like models
J. Barker (1973)
10.1021/J100308A038
THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS
H. Berendsen (1987)
J. Chem. Phys. J. Chem. Phys
E Smith
10.1063/1.461272
Peptides in ionic solutions: A comparison of the Ewald and switching function techniques
P. Smith (1991)
J. Chem. Phys
L Jorgensen
J. Phys. Chem
J C Berendsen
10.1073/PNAS.90.19.8920
On achieving better than 1-A accuracy in a simulation of a large protein: Streptomyces griseus protease A.
D. Kitson (1993)
10.1021/J100358A012
Acceleration of convergence for lattice sums
N. Karasawa (1989)
Chem. Phys. Lett
A Board
J. Phys. Chem
S Bader
10.1021/BI00140A022
Cutoff size does strongly influence molecular dynamics results on solvated polypeptides.
H. Schreiber (1992)
10.1063/1.448118
Molecular dynamics with coupling to an external bath
H. Berendsen (1984)
10.1063/1.468411
Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation
M. Saito (1994)
10.1063/1.445869
Comparison of simple potential functions for simulating liquid water
W. Jorgensen (1983)
10.1103/PHYSREVLETT.45.1196
Crystal structure and pair potentials: A molecular-dynamics study
M. Parrinello (1980)
10.1063/1.469422
Effect of the treatment of long‐range forces on the dynamics of ions in aqueous solutions
L. Perera (1995)
10.1063/1.451198
Dielectric relaxation in water. Computer simulations with the TIP4P potential
M. Neumann (1986)
10.1021/JA00119A045
Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins
T. Cheatham (1995)
J. Chem. Phys
E Smith
Mol. Sim. J. Chem. Phys
A Luty
10.1063/1.470490
Lattice‐sum methods for calculating electrostatic interactions in molecular simulations
B. Luty (1995)
4193 ͑1995͒. 11 ͑a͒ H. Schreiber and O. Steinhauser
E Cheatham
10.1016/0021-9991(77)90098-5
Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes
Jean-Paul Ryckaert (1977)
10.1063/1.467576
The fast Fourier Poisson method for calculating Ewald sums
D. York (1994)
Mol. Phys
W Perram
10.1051/JPHYSRAD:019520013011049900
L'énergie électrostatique de réseaux ioniques
F. Bertaut (1952)
Ann. Phys. J. Phys. Radium
A Board
10.1073/PNAS.91.18.8715
Atomic-level accuracy in simulations of large protein crystals.
D. York (1994)
͑1995͒. 44 W. Smith, CCP5 Info. Quart. 26 ͑1980͒. 47 S. Nose and M. L. Klein
E Roberts (1196)
10.1063/1.464358
Computer simulation of a phospholipid monolayer‐water system: The influence of long range forces on water structure and dynamics
H. Alper (1993)
10.2307/2938686
Computer Simulation of Liquids
M. P. Allen (1988)
10.1098/rspa.1981.0064
Electrostatic energy in ionic crystals
E. R. Smith (1981)
10.2307/2348146
An introduction to the bootstrap
B. Efron (1993)
J. Am. Chem. Soc
P E Weerasinghe
10.1063/1.464397
Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems
T. Darden (1993)
J. Phys. Chem
Q Ding
10.1021/J100004A037
BOUNDARY CONDITIONS IN SIMULATIONS OF AQUEOUS IONIC SOLUTIONS : A SYSTEMATIC STUDY
J. Roberts (1995)
10.1016/0009-2614(95)00065-C
A simple test for evaluating the truncation effects in simulations of systems involving charged groups
P. Auffinger (1995)
10.1021/JA00113A004
Nanosecond Dynamics and Structure of a Model DNA Triple Helix in Saltwater Solution
Samantha Weerasinghe (1995)
10.1063/1.463935
Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions
H. Ding (1992)
10.1016/0009-2614(91)90284-G
Molecular dynamics simulations of water with Ewald summation for the long range electrostatic interactions
Mahfoud Belhadj (1991)
10.1137/1.9781611970555
Cardinal Spline Interpolation
I. J. Schoenberg (1987)
10.1080/00268977900103021
Molecular dynamics calculation of the dielectric constant without periodic boundary conditions. I
G. Bossis (1979)
J. Chem. Phys
E Alper
London 375, 475 ͑1981͒
R Smith
J. Chem. Phys
A Darden
Phys
P Ryckaert
10.1016/0301-0104(83)85269-0
On the dielectric theory and computer simulation of water
O. Steinhauser (1983)
10.1021/J100384A066
The h = 0 term in Coulomb sums by the Ewald transformation
M. Deem (1990)
10.1063/1.470043
Accuracy and efficiency of the particle mesh Ewald method
H. Petersen (1995)
10.1016/0167-7322(94)00746-2
Effects of long-range interactions on the dynamics of ions in aqueous solution
G. D. Buono (1994)



This paper is referenced by
10.1039/b925041g
Parameterization and validation of an accurate force-field for the simulation of alkylamine functionalized silicon (111) surfaces.
V. Barone (2010)
Computer simulations : Orientation of Lysozyme in vacuum under the influence of an electric field
Alexei Abrikossov (2011)
10.1080/07391102.2014.929535
Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors
R. Kumar (2015)
Molecular dynamics of a respiratory protein fragment in phospholipid monomolecular films
Santosh K. Gupta (2009)
The effect of acyl chain unsaturation on phospholipid bilayer
Smita P. Soni (2010)
10.20546/ijcmas.2019.801.161
Multivalent Interactions of Nano-spaced Dimers of N-acetylneuraminic Acid Analogues Complex with H5N1 Influenza Viral Neuraminidase and Haemagglutinin - A Molecular Dynamics Investigation
J. Blessy (2019)
The Activation Entropy Change in Enzymatic Reaction Catalyzed by Isochorismate-Pyruvate Lyase of Pseudomonas Aeruginosa PchB
Liangxu Xie (2017)
In Silico Design of BACE 1 Inhibitor for Alzheimer ’ s Disease by Traditional Chinese Medicine
Hung-Jin Huang (2015)
Desarrollo de péptidos fotoconmutables para el control de la actividad celular
Andrés Martín Quirós (2014)
10.1080/07391102.2018.1438923
Molecular dynamics simulation of metal free structure of Lmb, a laminin-binding adhesin of Streptococcus agalactiae: metal removal and its structural implications
U. Sridharan (2019)
10.1093/nar/gku689
High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase
Kiran S. Gajula (2014)
Integrating conformational and protonation equilibria in biomolecular modeling
Meekyum Olivia Kim (2015)
10.1021/acs.langmuir.7b03715
Molecular Dynamics Simulation of the pH-Induced Structural Transitions in CTAB/NaSal Solution.
H. Yan (2018)
ExtremeTh 1 biasof invariant V a 24 J a QTcells in type 1 diabetes
Paul J. Steinhardt (1999)
10.1016/j.jmb.2011.11.025
A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
E. Spudich (2012)
10.1021/jp110438c
Effect of solvation on the vertical ionization energy of thymine: from microhydration to bulk.
Debashree Ghosh (2011)
10.1038/srep01660
Aggregated Gas Molecules: Toxic to Protein?
M. Zhang (2013)
10.17077/etd.otwjx2hz
Use of osmotic coefficient measurements to validate and to correct the interaction thermodynamics of amino acids in molecular dynamics simulations
M. S. Miller (2018)
10.1021/ACS.JPCC.7B10567
Effects of Silica Surfaces on the Structure and Dynamics of Room Temperature Ionic Liquids: A Molecular Dynamics Simulation Study
T. Pal (2017)
10.1021/es505518r
PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water.
Ryan S. DeFever (2015)
10.1080/07391102.2015.1113384
Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity
F. Wang (2016)
10.1021/acs.langmuir.8b01211
Toward Understanding Liposome-Based siRNA Delivery Vectors: Atomic-Scale Insight into siRNA-Lipid Interactions.
A. Y. Antipina (2018)
10.1016/j.saa.2019.117452
Study on the stereoselective binding of cytosine nucleoside enantiomers to human serum albumin.
C. Liu (2019)
Supplemental Information ALS Mutations Disrupt Phase Separation Mediated by a-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain
Alexander E Conicella (2016)
10.1080/07391102.2016.1209131
Conformational dynamics of Peb4 exhibit “mother’s arms” chain model: a molecular dynamics study
S. Dantu (2017)
10.1016/J.INDCROP.2017.10.046
In vitro and in silico approaches to appraise Polygonum maritimum L. as a source of innovative products with anti-ageing potential
M. J. Rodrigues (2018)
10.1093/nar/gky712
Structural dynamics of propeller loop: towards folding of RNA G-quadruplex
M. Havrila (2018)
10.1080/08927022.2014.899700
Advancing simulations of biological materials: applications of coarse-grained models on graphics processing unit hardware
David N. LeBard (2014)
10.1039/C4TA01459F
Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay-polysaccharide nanocomposites
Y. Wang (2014)
10.1021/acs.jctc.6b00931
Gaussian Accelerated Molecular Dynamics in NAMD
Yui Tik Pang (2017)
10.1021/ct500142c
Fast Switching Alchemical Transformations in Molecular Dynamics Simulations.
P. Procacci (2014)
10.1038/s42003-018-0075-x
Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations
Kevin Hauser (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar