← Back to Search

DOI: 10.1063/1.470117

# A Smooth Particle Mesh Ewald Method

U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, L. Pedersen

Published 1995 ·

The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors. This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1. Furthermore, efficient calculation of the virial tensor follows. Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy. We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N). For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less.

This paper references

J. Stat. Phys

E Schmidt

10.1016/0010-4655(91)90107-V

A loose-coupling, constant-pressure, molecular dynamics algorithm for use in the modelling of polymer materials

D. Brown (1991)

Chem. Phys. Lett. ͑submitted͒. Acta Crystallogr. Sec. A

G Lambert

10.2307/2153134

An introduction to wavelets

C. Chui (1992)

10.1107/S0567739473000458

Crystallographic fast Fourier transforms

L. F. Eyck (1973)

10.1063/1.465608

The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods

D. York (1993)

10.1021/J100194A059

Computer simulation study of the mean forces between ferrous and ferric ions in water

J. Bader (1992)

J. Mol. Liq

S D Buono

Proc. R. Soc. London Ser. A

W Deleeuw

10.2307/2008489

The Rapid Evaluation of Potential Fields in Particle Systems

L. Greengard (1988)

10.1063/1.467425

How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations

J. Roberts (1994)

J. Chem. Phys. Chem. Phys. J. Chem. Phys

J C Berendsen (1995)

J. Chem. Phys

G Petersen

10.1007/BF02186852

Calculating the pressure in simulations using periodic boundary conditions

E. Smith (1994)

667 ͑1994͒. 18 L. Verlet

J Steinbach

10.1887/0852743920

Computer simulation using particles

R. Hockney (1966)

Comp. Phys. Comm

R Smith

10.1103/PHYSREV.159.98

Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules

L. Verlet (1967)

10.1107/S0567739471000998

Accelerated convergence of crystal-lattice potential sums

D. Williams (1971)

10.1016/0009-2614(92)90053-P

Accelerated molecular dynamics simulation with the parallel fast multipole algorithm

J. Board (1992)

Chem

H Shimada

Chem. Chem. Phys. Lett

H Kitchen

J. Chem. Phys

W York

10.1063/1.439486

Molecular dynamics simulations at constant pressure and/or temperature

H. C. Andersen (1980)

10.1002/jcc.540150702

New spherical‐cutoff methods for long‐range forces in macromolecular simulation

P. J. Steinbach (1994)

Acta Crystallogr. Sec. A

E Williams

10.1021/JA00122A034

Toward the Accurate Modeling of DNA: The Importance of Long-Range Electrostatics

D. York (1995)

10.1063/1.468564

MOLECULAR DYNAMICS SIMULATION STUDIES OF A HIGH RESOLUTION Z-DNA CRYSTAL

H. Lee (1995)

Chem. Phys. Lett. J. Phys. Chem

R Reddy

10.1007/BF01030008

Implementing the fast multipole method in three dimensions

K. Schmidt (1991)

10.1002/jcc.540150105

Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations

J. Shimada (1994)

10.1098/rspa.1980.0135

Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants

S. W. de Leeuw (1980)

Proc. Nat. Acad. Sci. 90

H Kitson

10.1016/0009-2614(89)85344-8

The dielectric constant of SPC/E water

M. R. Reddy (1989)

J. Chem. Phys

Chem. Phys. Lett

D L Auffinger

10.1016/0009-2614(82)80028-6

Molecular dynamics with stochastic boundary conditions

M. Berkowitz (1982)

10.1002/ANDP.19213690304

Die Berechnung optischer und elektrostatischer Gitterpotentiale

P. Ewald (1921)

10.1080/00268978800101471

An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles

J. Perram (1988)

10.1080/00268978300102851

Constant pressure molecular dynamics for molecular systems

Shūichi Nosé (1983)

J. Chem. Phys

Saito

10.1002/JCC.540111009

Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water

D. B. Kitchen (1990)

J. Chem. Phys. J. Chem. Phys

E Roberts

10.1080/00268977300102101

Monte Carlo studies of the dielectric properties of water-like models

J. Barker (1973)

10.1021/J100308A038

THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS

H. Berendsen (1987)

J. Chem. Phys. J. Chem. Phys

E Smith

10.1063/1.461272

Peptides in ionic solutions: A comparison of the Ewald and switching function techniques

P. Smith (1991)

J. Chem. Phys

L Jorgensen

J. Phys. Chem

J C Berendsen

10.1073/PNAS.90.19.8920

On achieving better than 1-A accuracy in a simulation of a large protein: Streptomyces griseus protease A.

D. Kitson (1993)

10.1021/J100358A012

Acceleration of convergence for lattice sums

N. Karasawa (1989)

Chem. Phys. Lett

A Board

J. Phys. Chem

S Bader

10.1021/BI00140A022

Cutoff size does strongly influence molecular dynamics results on solvated polypeptides.

H. Schreiber (1992)

10.1063/1.448118

Molecular dynamics with coupling to an external bath

H. Berendsen (1984)

10.1063/1.468411

Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation

M. Saito (1994)

10.1063/1.445869

Comparison of simple potential functions for simulating liquid water

W. Jorgensen (1983)

10.1103/PHYSREVLETT.45.1196

Crystal structure and pair potentials: A molecular-dynamics study

M. Parrinello (1980)

10.1063/1.469422

Effect of the treatment of long‐range forces on the dynamics of ions in aqueous solutions

L. Perera (1995)

10.1063/1.451198

Dielectric relaxation in water. Computer simulations with the TIP4P potential

M. Neumann (1986)

10.1021/JA00119A045

Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins

T. Cheatham (1995)

J. Chem. Phys

E Smith

Mol. Sim. J. Chem. Phys

A Luty

10.1063/1.470490

Lattice‐sum methods for calculating electrostatic interactions in molecular simulations

B. Luty (1995)

4193 ͑1995͒. 11 ͑a͒ H. Schreiber and O. Steinhauser

E Cheatham

10.1016/0021-9991(77)90098-5

Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes

Jean-Paul Ryckaert (1977)

10.1063/1.467576

The fast Fourier Poisson method for calculating Ewald sums

D. York (1994)

Mol. Phys

W Perram

10.1051/JPHYSRAD:019520013011049900

L'énergie électrostatique de réseaux ioniques

F. Bertaut (1952)

Ann. Phys. J. Phys. Radium

A Board

10.1073/PNAS.91.18.8715

Atomic-level accuracy in simulations of large protein crystals.

D. York (1994)

͑1995͒. 44 W. Smith, CCP5 Info. Quart. 26 ͑1980͒. 47 S. Nose and M. L. Klein

E Roberts (1196)

10.1063/1.464358

Computer simulation of a phospholipid monolayer‐water system: The influence of long range forces on water structure and dynamics

H. Alper (1993)

10.2307/2938686

Computer Simulation of Liquids

M. P. Allen (1988)

10.1098/rspa.1981.0064

Electrostatic energy in ionic crystals

E. R. Smith (1981)

10.2307/2348146

An introduction to the bootstrap

B. Efron (1993)

J. Am. Chem. Soc

P E Weerasinghe

10.1063/1.464397

Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

T. Darden (1993)

J. Phys. Chem

Q Ding

10.1021/J100004A037

BOUNDARY CONDITIONS IN SIMULATIONS OF AQUEOUS IONIC SOLUTIONS : A SYSTEMATIC STUDY

J. Roberts (1995)

10.1016/0009-2614(95)00065-C

A simple test for evaluating the truncation effects in simulations of systems involving charged groups

P. Auffinger (1995)

10.1021/JA00113A004

Nanosecond Dynamics and Structure of a Model DNA Triple Helix in Saltwater Solution

Samantha Weerasinghe (1995)

10.1063/1.463935

Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions

H. Ding (1992)

10.1016/0009-2614(91)90284-G

Molecular dynamics simulations of water with Ewald summation for the long range electrostatic interactions

Mahfoud Belhadj (1991)

10.1137/1.9781611970555

Cardinal Spline Interpolation

I. J. Schoenberg (1987)

10.1080/00268977900103021

Molecular dynamics calculation of the dielectric constant without periodic boundary conditions. I

G. Bossis (1979)

J. Chem. Phys

E Alper

London 375, 475 ͑1981͒

R Smith

J. Chem. Phys

A Darden

Phys

P Ryckaert

10.1016/0301-0104(83)85269-0

On the dielectric theory and computer simulation of water

O. Steinhauser (1983)

10.1021/J100384A066

The h = 0 term in Coulomb sums by the Ewald transformation

M. Deem (1990)

10.1063/1.470043

Accuracy and efficiency of the particle mesh Ewald method

H. Petersen (1995)

10.1016/0167-7322(94)00746-2

Effects of long-range interactions on the dynamics of ions in aqueous solution

G. D. Buono (1994)

This paper is referenced by

10.1039/b925041g

Parameterization and validation of an accurate force-field for the simulation of alkylamine functionalized silicon (111) surfaces.

V. Barone (2010)

Computer simulations : Orientation of Lysozyme in vacuum under the influence of an electric field

Alexei Abrikossov (2011)

10.1080/07391102.2014.929535

Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors

R. Kumar (2015)

Molecular dynamics of a respiratory protein fragment in phospholipid monomolecular films

Santosh K. Gupta (2009)

The effect of acyl chain unsaturation on phospholipid bilayer

Smita P. Soni (2010)

10.20546/ijcmas.2019.801.161

Multivalent Interactions of Nano-spaced Dimers of N-acetylneuraminic Acid Analogues Complex with H5N1 Influenza Viral Neuraminidase and Haemagglutinin - A Molecular Dynamics Investigation

J. Blessy (2019)

The Activation Entropy Change in Enzymatic Reaction Catalyzed by Isochorismate-Pyruvate Lyase of Pseudomonas Aeruginosa PchB

Liangxu Xie (2017)

In Silico Design of BACE 1 Inhibitor for Alzheimer ’ s Disease by Traditional Chinese Medicine

Hung-Jin Huang (2015)

Desarrollo de péptidos fotoconmutables para el control de la actividad celular

Andrés Martín Quirós (2014)

10.1080/07391102.2018.1438923

Molecular dynamics simulation of metal free structure of Lmb, a laminin-binding adhesin of Streptococcus agalactiae: metal removal and its structural implications

U. Sridharan (2019)

10.1093/nar/gku689

High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

Kiran S. Gajula (2014)

Integrating conformational and protonation equilibria in biomolecular modeling

Meekyum Olivia Kim (2015)

10.1021/acs.langmuir.7b03715

Molecular Dynamics Simulation of the pH-Induced Structural Transitions in CTAB/NaSal Solution.

H. Yan (2018)

ExtremeTh 1 biasof invariant V a 24 J a QTcells in type 1 diabetes

Paul J. Steinhardt (1999)

10.1016/j.jmb.2011.11.025

A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.

E. Spudich (2012)

10.1021/jp110438c

Effect of solvation on the vertical ionization energy of thymine: from microhydration to bulk.

Debashree Ghosh (2011)

10.1038/srep01660

Aggregated Gas Molecules: Toxic to Protein?

M. Zhang (2013)

10.17077/etd.otwjx2hz

Use of osmotic coefficient measurements to validate and to correct the interaction thermodynamics of amino acids in molecular dynamics simulations

M. S. Miller (2018)

10.1021/ACS.JPCC.7B10567

Effects of Silica Surfaces on the Structure and Dynamics of Room Temperature Ionic Liquids: A Molecular Dynamics Simulation Study

T. Pal (2017)

10.1021/es505518r

PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water.

Ryan S. DeFever (2015)

10.1080/07391102.2015.1113384

Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity

F. Wang (2016)

10.1021/acs.langmuir.8b01211

Toward Understanding Liposome-Based siRNA Delivery Vectors: Atomic-Scale Insight into siRNA-Lipid Interactions.

A. Y. Antipina (2018)

10.1016/j.saa.2019.117452

Study on the stereoselective binding of cytosine nucleoside enantiomers to human serum albumin.

C. Liu (2019)

Supplemental Information ALS Mutations Disrupt Phase Separation Mediated by a-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain

Alexander E Conicella (2016)

10.1080/07391102.2016.1209131

Conformational dynamics of Peb4 exhibit “mother’s arms” chain model: a molecular dynamics study

S. Dantu (2017)

10.1016/J.INDCROP.2017.10.046

In vitro and in silico approaches to appraise Polygonum maritimum L. as a source of innovative products with anti-ageing potential

M. J. Rodrigues (2018)

10.1093/nar/gky712

Structural dynamics of propeller loop: towards folding of RNA G-quadruplex

M. Havrila (2018)

10.1080/08927022.2014.899700

Advancing simulations of biological materials: applications of coarse-grained models on graphics processing unit hardware

David N. LeBard (2014)

10.1039/C4TA01459F

Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay-polysaccharide nanocomposites

Y. Wang (2014)

10.1021/acs.jctc.6b00931

Gaussian Accelerated Molecular Dynamics in NAMD

Yui Tik Pang (2017)

10.1021/ct500142c

Fast Switching Alchemical Transformations in Molecular Dynamics Simulations.

P. Procacci (2014)

10.1038/s42003-018-0075-x

Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations

Kevin Hauser (2018)

See more