Online citations, reference lists, and bibliographies.
← Back to Search

Effects Of The Covalent Linker Groups On The Spin Transport Properties Of Single Nickelocene Molecules Attached To Single-walled Carbon Nanotubes.

P. Wei, L. Sun, E. Benassi, Z. Shen, S. Sanvito, S. Hou
Published 2012 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The understanding of how the spin moment of a magnetic molecule transfers to a carbon nanotube, when the molecule is attached to it, is crucial for designing novel supramolecular spin devices. Here we explore such an issue by modeling the spin transport of a single-walled carbon nanotube grafted with one nickelocene molecule. In particular we investigate how the electron transport becomes spin-polarized depending on the specific linking group bonding nickelocene to the nanotube. We consider as linkers both aziridine and pyrrolidine rings and the amide group. Our calculations show that, at variance with aziridine, both pyrrolidine and amide, do alter the sp(2) character of the binding site of the nanotube and thus affect the transmission around the Fermi level. However, only aziridine allows transferring the spin polarization of the nickelocene to the nanotube, whose conductance at the Fermi level becomes spin-polarized. This suggests the superiority of aziridine as a linker for grafting magnetic molecules onto carbon nanotubes with efficient spin filtering functionality.
This paper references
10.1103/PHYSREVB.69.075414
Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study
Yosuke Yagi (2004)
Inorg. Chim. Acta
W Bogani (2008)
10.1038/35099
Broken symmetry and pseudogaps in ropes of carbon nanotubes
P. Delaney (1998)
Chem. Soc. Rev
S Sanvito (2011)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1039/b518111a
Organic functionalisation and characterisation of single-walled carbon nanotubes.
P. Singh (2009)
B Heersche
Phys. Chem. Chem. Phys
L Shen (2010)
Nature Mater
L Bogani (2008)
Roche, Rev. Mod. Phys
C Charlier (2007)
10.1063/1.480696
Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires
L. E. Hall (2000)
Phys. Rev. Lett
H Dion (2004)
10.1103/PhysRevLett.92.246401
van der Waals density functional for general geometries.
M. Dion (2004)
10.1063/1.2483760
First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
Z. Qian (2007)
10.1103/PhysRevB.65.165401
Density-functional method for nonequilibrium electron transport
M. Brandbyge (2002)
10.1103/PHYSREVLETT.101.236806
Conductance of sidewall-functionalized carbon nanotubes: universal dependence on adsorption sites.
J. M. García-Lastra (2008)
10.1016/0009-2614(88)85252-7
Electronic interference produced by a benzene embedded in a polyacetylene chain
P. Sautet (1988)
10.1103/PhysRevLett.99.056801
Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport.
C. Toher (2007)
Phys. Rev
P Hohenberg (1964)
10.1021/cr900254z
Covalent and noncovalent phthalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics.
G. Bottari (2010)
10.1021/nl8016175
Quantum-interference-controlled molecular electronics.
S. Ke (2008)
10.1063/1.3603446
Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms.
P. Wei (2011)
10.1021/ja9084012
Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au.
Chih-Hung Ko (2010)
Q Liu (2011)
Phys. Rev. B
N Troullier (1991)
10.1021/nn901784t
Tuning the magneto-transport properties of nickel-cyclopentadienyl multidecker clusters by molecule-electrode coupling manipulation.
Zelong Yi (2010)
10.1103/PhysRevLett.97.116801
Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes.
Y. Lee (2006)
10.1126/SCIENCE.1086963
Coherent Spin Transfer Between Molecularly Bridged Quantum Dots
M. Ouyang (2003)
J. Chem. Phys
L Shen (2010)
Phys. Rev. B
M De Almeida (2011)
10.1021/ja906165e
Anchoring of rare-earth-based single-molecule magnets on single-walled carbon nanotubes.
Svetlana Kyatskaya (2009)
10.1021/ja903731m
Frustrated rotations in single-molecule junctions.
Y. S. Park (2009)
10.1103/PhysRevB.84.085412
Spin filtering and disorder-induced magnetoresistance in carbon nanotubes: Ab initio calculations
J. M. D. Almeida (2011)
10.1016/J.ICA.2008.03.074
A perspective on combining molecular nanomagnets and carbon nanotube electronics
L. Bogani (2008)
10.1088/0022-3719/4/8/018
Direct calculation of the tunneling current
C. Caroli (1971)
10.1021/JP710938V
First-Principles Studies on Carbon Nanotubes Functionalized with Azomethine Ylides
E. Cho (2008)
10.1103/PHYSREVB.43.1993
Efficient pseudopotentials for plane-wave calculations.
Troullier (1991)
10.1002/ANIE.200351289
Single-wall carbon nanotube-ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs.
D. Guldi (2003)
Phys. Rev. Lett
M Carcía-Lastra (2008)
Phys. Rev. B
S M Guimarães (2010)
Nano Lett
S.-H Ke (2008)
J. Am. Chem. Soc
S Park (2009)
Phys. Rev. Lett
K Perdew (1996)
J. Am. Chem. Soc
M Ricci (2010)
J. Chem. Phys
L Wei (2011)
Phys. Rev. B
T M Yagi (2004)
10.1103/PHYSREVB.80.104422
Ab initio calculation of the biasdependent transport properties of Mn12 molecules
S. Sanvito (2009)
Adv. Mater
X Peng (2009)
Adv. Funct. Mater
C Biswas (2011)
Rev. Lett
(2006)
Chem. Phys. Lett
P Sautet (1988)
10.1021/JA016605S
Phase coherent electronics: a molecular switch based on quantum interference.
R. Baer (2002)
10.1002/ADFM.201101241
Graphene Versus Carbon Nanotubes in Electronic Devices
C. Biswas (2011)
Nano Lett
D N Rumberger (2006)
J. Phys.: Condens. Matter
M Soler (2002)
Nature Mater
S Urdampilleta (2011)
10.1103/PHYSREVLETT.68.2512
Landauer formula for the current through an interacting electron region.
Meir (1992)
J. Am. Chem. Soc
S Park (2007)
J. Am. Chem. Soc
J R G Kyatskaya (2009)
Angew. Chem. Int. Ed
M Guldi (2003)
10.1103/PHYSREV.136.B864
THE INHOMOGENEOUS ELECTRON GAS.
P. Hohenberg (1964)
10.1038/nmat2133
Molecular spintronics using single-molecule magnets.
Lapo Bogani (2008)
10.1021/JA0773857
Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines.
Y. S. Park (2007)
J. Chem. Phys
(2012)
Phys. Rev
W Kohn (1965)
10.1103/PhysRevB.76.115117
Transmission eigenchannels from nonequilibrium Green's functions
M. Paulsson (2007)
10.1038/NPHYS1714
Molecular spintronics: The rise of spinterface science
S. Sanvito (2010)
10.1038/nmat3050
Supramolecular spin valves.
M. Urdampilleta (2011)
Chem. Rev
G Bottari (2010)
A K Manna (2010)
10.1021/nl052373+
Single-molecule circuits with well-defined molecular conductance.
L. Venkataraman (2006)
10.1063/1.2388272
Analysis on the contribution of molecular orbitals to the conductance of molecular electronic devices.
R. Li (2006)
10.1103/PhysRevB.81.153408
Carbon nanotube: A low-loss spin-current waveguide
F. Guimarães (2010)
Phys. Rev. B
D Pemmaraju (2009)
J. Chem. Phys
S Li (2006)
Phys. Rev. Lett
C Toher (2007)
J. Phys. Chem. A
F Xu (2003)
J. Phys. Chem. C
S Cho (2008)
H Jo
10.1016/J.CHEMPHYS.2007.06.011
A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration
R. Li (2007)
10.1103/PHYSREVLETT.77.3865
Generalized Gradient Approximation Made Simple.
Perdew (1996)
Nano Lett
J E Venkataraman (2006)
Phys. Rev. B
R Rocha (2006)
Angew. Chem. Int. Ed
G Giusti (2009)
Chem. Phys. Phys. Rev. B
S Xue (2002)
10.1063/1.2804867
A simple model of molecular electronic devices and its analytical solution.
M. Ernzerhof (2007)
10.1039/c0nr00124d
Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
A. K. Manna (2010)
10.1103/PHYSREVB.73.085414
Spin and molecular electronics in atomically generated orbital landscapes
A. R. Rocha (2006)
Phys. Rev. B
M Paulsson (2007)
J. Am. Chem. Soc
C.-H Ko (2010)
J. Am. Chem. Soc
G C Herrmann (2010)
10.1103/PHYSREV.140.A1133
Self-Consistent Equations Including Exchange and Correlation Effects
W. Kohn (1965)
10.1021/ja910483b
Organic radicals as spin filters.
C. Herrmann (2010)
Nature Mater
R Rocha (2005)
10.1039/c002301a
Spin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes.
Xin Shen (2010)
10.1016/S0301-0104(02)00446-9
First-principles based matrix Green's function approach to molecular electronic devices: general formalism
Yongqiang Xue (2002)
C: Solid State Phys
R Caroli (1971)
J. Am. Chem. Soc
R Baer (2002)
10.1063/1.3302258
Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes.
Xin Shen (2010)
10.1016/J.CARBON.2009.04.048
Enhanced spin-valve effect in magnetically doped carbon nanotubes
D. F. Kirwan (2009)
Wei
Nat. Phys
S Sanvito (2010)
ACS Nano
X Yi (2010)
Chem. Phys
J Li (2007)
10.1103/REVMODPHYS.79.677
Electronic and transport properties of nanotubes
Jean-Christophe Charlier (2007)
10.1021/ja907867b
Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds.
A. Ricci (2010)
10.1103/PhysRevLett.96.206801
Electron transport through single Mn12 molecular magnets.
H. B. Heersche (2006)
J. Chem. Phys
S Qian (2007)
Chem. Soc. Rev
S Singh (2009)
This article is copyrighted as indicated in the article Reuse of AIP content is subject to the terms at: http://scitation
(2014)
10.1002/ADMA.200801464
Functional Covalent Chemistry of Carbon Nanotube Surfaces
Xiaohui Peng (2009)
Phys. Rev. Lett
Meir (1992)
J. Chem. Phys
M Ernzerhof (2007)
Carbon
F Kirwan (2009)
10.1021/NL061212I
Signatures of molecular magnetism in single-molecule transport spectroscopy.
Moon-Ho Jo (2006)
10.1002/smll.201002307
Carbene-functionalized single-walled carbon nanotubes and their electrical properties.
C. Liu (2011)
Metallocenes (Blackwell Science
J Long (1998)
J. Chem. Phys
E Hall (2000)
10.1021/JP0219855
Systematic Investigation of Electronic and Molecular Structures for the First Transition Metal Series Metallocenes M(C5H5)2 (M = V, Cr, Mn, Fe, Co, and Ni)
Zhen-feng Xu (2003)
10.1088/0957-4484/16/12/055
An accurate and efficient self-consistent approach for calculating electron transport through molecular electronic devices: including the corrections of electrodes
J. Zhang (2005)
10.1038/NMAT1349
Towards molecular spintronics
A. R. Rocha (2005)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar