Online citations, reference lists, and bibliographies.
← Back to Search

A Genetic Algorithm For First Principles Global Structure Optimization Of Supported Nano Structures.

L. Vilhelmsen, B. Hammer
Published 2014 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA's with a description of optimal parameters to use. New results for the adsorption of M8 clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO2(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.
This paper references
10.1088/0953-8984/25/49/495401
A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials.
W. Tipton (2013)
10.1063/1.4829640
Interfacial oxygen under TiO2 supported Au clusters revealed by a genetic algorithm search.
L. Vilhelmsen (2013)
10.1039/c2nr32517a
DFT study of the structures and energetics of 98-atom AuPd clusters.
A. Bruma (2013)
10.1080/00268970903446756
OGOLEM: Global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach
Johannes M. Dieterich (2010)
10.1038/33369
Structures of medium-sized silicon clusters
K. Ho (1998)
10.1039/B305686D
Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries
R. Johnston (2003)
10.1016/J.CPLETT.2008.03.077
Small Au clusters on a defective MgO(1 0 0) surface
G. Barcaro (2008)
10.1021/ja305004a
Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74.
L. Vilhelmsen (2012)
10.1063/1.464552
Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties
V. Bonačić-Koutecký (1993)
10.1038/29487
Archetypal energy landscapes
D. Wales (1998)
10.1021/jz301806b
Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66.
L. Vilhelmsen (2012)
10.1021/ct600312f
Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni.
G. Zheng (2007)
10.1016/J.SUSC.2010.12.002
Structures of AgPd nanoclusters adsorbed on MgO(100): A computational study
F. R. Negreiros (2011)
10.1103/PHYSREVLETT.108.126101
Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory.
L. Vilhelmsen (2012)
10.1007/s11244-013-0160-9
Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts
S. Lysgaard (2013)
10.1021/JP970984N
Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
D. Wales (1997)
10.1063/1.2210932
Crystal structure prediction using ab initio evolutionary techniques: principles and applications.
A. Oganov (2006)
10.1063/1.1898223
Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems.
A. Rapallo (2005)
10.1021/ja9108374
Structures of [Ag7(SR)4]- and [Ag7(DMSA)4]-.
H. Xiang (2010)
10.1126/SCIENCE.1083671
The Impact of Nanoscience on Heterogeneous Catalysis
A. T. Bell (2003)
10.1007/s11244-007-0277-9
Oxidation state of oxide supported nanometric gold
J. Wang (2007)
10.1002/QUA.24462
Global optimization of clusters using electronic structure methods
S. Heiles (2013)
10.1039/B709000E
Searching for the optimum structures of alloy nanoclusters.
R. Ferrando (2008)
10.1063/1.3079326
How to quantify energy landscapes of solids.
A. Oganov (2009)
10.1134/S107036321006006X
Quantum-chemical study of adsorption of Ag2, Ag4, and Ag8 on different parts of the TiO2 surface
V. E. Matulis (2010)
10.1021/JP9814597
Genetic Algorithms for Structural Cluster Optimization
M. Wolf (1998)
10.1103/PhysRevB.75.195415
Evolutionary approach for finding the atomic structure of steps on stable crystal surfaces
R. Briggs (2007)
10.1103/PhysRevB.84.205434
Steps on rutile TiO 2 (110): Active sites for water and methanol dissociation
U. Martinez (2011)
10.1109/5992.998641
An object-oriented scripting interface to a legacy electronic structure code
S. R. Bahn (2002)
10.1103/PHYSREVE.59.48
Exponential multiplicity of inherent structures
F. H. Stillinger (1999)
10.1103/PHYSREVLETT.108.236103
Packing defects into ordered structures: strands on TiO2.
R. Bechstein (2012)
10.1002/ANIE.200390334
Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters.
H. Häkkinen (2003)
10.1201/9781420055771
Atomic and molecular clusters
R. Johnston (2002)
10.1103/PHYSREVB.70.195413
Nonicosahedral growth and magnetic behavior of rhodium clusters
Young-Cho Bae (2004)
10.1021/JP035995X
The Simple Cubic Structure of Ruthenium Clusters
Wenqin Zhang (2004)
10.1021/J100141A013
Global geometry optimization of clusters using genetic algorithms
B. Hartke (1993)
10.1021/JP3072102
Structures and Energetics of Pt Clusters on TiO2: Interplay between Metal–Metal Bonds and Metal–Oxygen Bonds
De-En Jiang (2012)
10.1063/1.3204488
A systematic search for minimum structures of small gold clusters Au(n) (n=2-20) and their electronic properties.
B. Assadollahzadeh (2009)
10.1016/J.COMMATSCI.2013.05.016
New minima for the Pt8 cluster
A. Sebetci (2013)
10.1021/JP070186P
DFTB+, a sparse matrix-based implementation of the DFTB method.
B. Aradi (2007)
10.1002/CHEM.200601796
Structure of Ag clusters Grown on Fs-Defect Sites of an MgO(1 0 0) surface.
G. Barcaro (2007)
10.1016/j.commatsci.2009.07.013
Density-functional tight-binding for beginners
P. Koskinen (2009)
10.1063/1.3272274
Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
N. Froemming (2009)
10.1021/ct050093g
Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters.
A. Alexandrova (2005)
10.1103/REVMODPHYS.77.371
Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects
F. Baletto (2005)
10.1002/EJIC.200900513
DFT Study of Small Palladium Clusters Pdn and Their Interaction with a CO Ligand (n = 1–9)
Giuseppe Zanti (2009)
10.1021/JP9935992
When Gold Is Not Noble: Nanoscale Gold Catalysts
A. Sanchéz (1999)
10.1021/CS500202F
Identification of the Catalytic Site at the Interface Perimeter of Au Clusters on Rutile TiO2(110)
L. Vilhelmsen (2014)
10.1103/PHYSREVLETT.55.2471
Unified approach for molecular dynamics and density-functional theory.
Car (1985)
10.1063/1.4807091
A sphere-cut-splice crossover for the evolution of cluster structures.
Zhanghui Chen (2013)
10.1103/PhysRevLett.75.288
Molecular geometry optimization with a genetic algorithm.
Deaven (1995)
10.1016/0009-2614(96)00406-X
Structural optimization of Lennard-Jones clusters by a genetic algorithm
D. M. Daven (1996)
10.1002/jcc.20247
Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters
L. D. Lloyd (2005)



This paper is referenced by
10.1021/ACSCATAL.6B00021
Mechanistic Insights into Propene Epoxidation with O2–H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations
Jin-Cheng Liu (2016)
10.1103/PhysRevLett.124.086102
Efficient Global Structure Optimization with a Machine-Learned Surrogate Model.
M. K. Bisbo (2020)
10.1039/c9nr10487a
Understanding the structural diversity of freestanding Al2O3 ultrathin films through a DFTB-aided genetic algorithm.
M. Van den Bossche (2020)
10.1063/1.5048290
Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies.
S. A. Meldgaard (2018)
10.1021/ACS.JPCC.5B04026
Gold and Silver Clusters on TiO2 and ZrO2 (101) Surfaces: Role of Dispersion Forces
A. Puigdollers (2015)
Graph Bayesian Optimization Graph Bayesian Optimization: Algorithms, Evaluations and Applications
Jiaxu Cui (2018)
10.1021/JP510468F
Adsorption of Ruthenium Atoms and Clusters on Anatase TiO2 and Tetragonal ZrO2(101) Surfaces: A Comparative DFT Study
H. Chen (2015)
10.1103/PHYSREVB.97.195424
Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
E. L. Kolsbjerg (2018)
10.1039/c5nr03774c
The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of Ir(N) (N = 10-20) clusters.
J. B. Davis (2015)
10.1021/ACS.JPCC.7B08438
Configurational Energies of Nanoparticles Based on Metal–Metal Coordination
Luke T Roling (2017)
The structure of metal-oxide interfaces investigated by genetic algorithms
Alvaro Posada-Borbón (2016)
10.7916/D8RR29PW
Low-dimensional Material: Structure-property Relationship and Applications in Energy and Environmental Engineering
Hang Xiao (2017)
10.1021/ACS.JPCC.6B12848
New AuN (N = 27–30) Lowest Energy Clusters Obtained by Means of an Improved DFT–Genetic Algorithm Methodology
J. Vargas (2017)
10.1021/ACS.JPCC.5B06132
Coexistence of Square Pyramidal Structures of Oxo Vanadium (+5) and (+4) Species Over Low-Coverage VOX/TiO2 (101) and (001) Anatase Catalysts
Logi Arnarson (2015)
10.1016/j.jmat.2020.02.011
Metaheuristic-based inverse design of materials – A survey
T. W. Liao (2020)
10.1063/1.5129296
Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization.
Geng Sun (2019)
Graph Bayesian Optimization: Algorithms, Evaluations and Applications
Jiaxu Cui (2018)
10.1021/ACS.CHEMMATER.5B00446
Accelerated DFT-Based Design of Materials for Ammonia Storage
P. Jensen (2015)
10.1021/acs.jctc.6b01119
Combining Evolutionary Algorithms with Clustering toward Rational Global Structure Optimization at the Atomic Scale.
M. Jørgensen (2017)
10.1063/1.5142363
A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo
M. Paleico (2020)
10.1002/cctc.201801082
Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective
S. Tosoni (2019)
10.1021/ACSCATAL.5B01816
Catalysis Applications of Size-Selected Cluster Deposition
S. Vajda (2015)
10.1117/12.2535633
Broadband polarization beam splitter based on subwavelength grating in Terahertz
yelan Zhang (2019)
10.1039/c4cp04323e
Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters.
A. Shayeghi (2015)
10.1080/23746149.2018.1516514
First principles global optimization of metal clusters and nanoalloys
M. Jäger (2018)
10.1088/2399-1984/AB36F0
Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance
Chi-Hua Yu (2019)
Monomeric, Two-Dimensionally Ordered WO$_3$ Clusters on Anatase TiO$_2$(101).
T. Xu (2020)
10.1039/c4nr03363a
Pd(n)Ag(4-n) and Pd(n)Pt(4-n) clusters on MgO (100): a density functional surface genetic algorithm investigation.
Christopher Heard (2014)
10.1021/ACS.JPCC.5B11625
Reduction of CO2 with Water on Pt-Loaded Rutile TiO2(110) Modeled with Density Functional Theory
N. Umezawa (2016)
10.1038/s41578-019-0101-8
Structure prediction drives materials discovery
A. Oganov (2019)
10.1016/j.foodchem.2020.127681
Experimental study on classical and metaheuristics algorithms for optimal nano-chitosan concentration selection in surface coating and food packaging.
A. Dadvar (2020)
10.1088/1361-648X/aa680e
The atomic simulation environment-a Python library for working with atoms.
Ask Hjorth Larsen (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar