Online citations, reference lists, and bibliographies.
← Back to Search

Chiral Anisotropic Magnetoresistance Of Ferromagnetic Helices

Henrik Maurenbrecher, J. Mendil, G. Chatzipirpiridis, Michael Mattmann, S. Pané, B. Nelson, Pietro Gambardella Institute of Robotics, I. Systems, E. Zurich, Switzerland., D. O. Materials
Published 2018 · Materials Science, Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We investigate the anisotropic magnetoresistance (AMR) of ferromagnetic CoNi microhelices fabricated by electrodeposition and laser printing. We find that the geometry of the three-dimensional winding determines a characteristic angular and field-dependence of the AMR due to the competition between helical shape anisotropy and external magnetic field. Moreover, we show that there is an additional contribution to the AMR that scales proportionally to the applied current and depends on the helix chirality. We attribute this contribution to the self magnetic field induced by the current, which modifies the orientation of the magnetization relative to the current flow along the helix. Our results underline the interest of three-dimensional curved geometries to tune the AMR and realize tubular magnetoresistive devices.
This paper references
10.1088/0022-3727/49/36/363001
Magnetism in curved geometries
R. Streubel (2016)
10.1038/ncomms4757
Electrical magnetochiral anisotropy in a bulk chiral molecular conductor.
F. Pop (2014)
10.1063/1.367113
Demagnetizing factors for rectangular ferromagnetic prisms
A. Aharoni (1998)
10.1063/1.4935497
Magnetoresistance of heavy and light metal/ferromagnet bilayers
C. Avci (2015)
10.1063/1.4979031
Chiral magnetoresistance in Pt/Co/Pt zigzag wires
Y. Yin (2017)
10.1002/adhm.201400256
Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications.
G. Chatzipirpiridis (2015)
10.1109/TMAG.1975.1058886
The barber pole, a linear magnetoresistive head
K. Kuijk (1975)
10.1021/nn202351j
Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.
I. Moench (2011)
10.1016/S1574-9304(05)80095-1
Chapter 9 Transport properties of ferromagnets
I. Campbell (1982)
10.1063/1.1523895
Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes
V. Krstić (2002)
10.1103/PhysRevB.91.180402
Electrical detection of magnetization reversal without auxiliary magnets
K. Olejník (2015)
10.1063/1.333619
Magnetics of small magnetoresistive sensors (invited)
C. Tsang (1984)
10.1063/1.4891276
Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature
D. Rüffer (2014)
10.1016/S0009-2614(02)01243-5
Magneto-chiral anisotropy of the free electron on a helix
V. Krstić (2002)
10.1088/0957-4484/23/25/255701
Magnetoresistance of rolled-up Fe3Si nanomembranes.
J. Schumann (2012)
10.1103/PHYSREVLETT.87.236602
Electrical magnetochiral anisotropy.
G. Rikken (2001)
10.1002/adma.201103818
Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport.
Soichiro Tottori (2012)
10.1103/PhysRevLett.117.127202
Large Unidirectional Magnetoresistance in a Magnetic Topological Insulator.
K. Yasuda (2016)
10.1109/TMAG.1975.1058782
Anisotropic magnetoresistance in ferromagnetic 3d alloys
T. Mcguire (1975)
10.1038/ncomms15434
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
K. Olejník (2017)
10.1038/nphys3356
Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers
C. Avci (2015)
10.1039/c2nr31086d
Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance.
D. Rüffer (2012)
10.1063/1.3676269
Towards compact three-dimensional magnetoelectronics—Magnetoresistance in rolled-up Co/Cu nanomembranes
C. Müller (2012)
10.1109/JSEN.2006.874493
Magnetic sensors and their applications
J. Lenz (2006)
10.1103/PHYSREVLETT.107.097204
Magnetic microhelix coil structures.
E. J. Smith (2011)
10.1016/J.ELECTACTA.2010.10.068
Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine
O. Ergeneman (2011)
10.1002/adma.201303003
Magnetic microstructure of rolled-up single-layer ferromagnetic nanomembranes.
R. Streubel (2014)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar