Online citations, reference lists, and bibliographies.
← Back to Search

Reversible Oxidation-reduction Of Epitaxial Iron Oxide Films On Pt(111): Magnetite-hematite Interconversion.

K. Freindl, Joanna Wojas, Natalia Kwiatek, J. Korecki, Nika Spiridis
Published 2020 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We studied magnetite-hematite-magnetite transformations in an ultrathin epitaxial film on Pt(111) using surface sensitive and bulk sensitive methods. At initial oxidation stages at elevated temperature (810 K), a 5-nm thick magnetite Fe3O4(111) film became non-stoichiometric toward maghemite and then showed the first signs of hematite phase formation under an oxygen exposure of 3 × 103 L. Finally, under 2 × 104 L, the film fully transformed to hematite α-Fe2O3(0001), maintaining a high single-crystal quality. A comparison of the conversion electron Mössbauer spectra and low energy electron diffraction pattern showed that at intermediate oxidation stages, hematite dominated at the surface, whereas a spinel phase was still observed in the deeper layers. The magnetite-hematite conversion was fully reversed by annealing under ultra-high vacuum at temperatures exceeding 600 K, and despite a change in morphology, the magnetite film preserved the original crystal structure and orientation.
This paper references
10.1103/PHYSREVB.67.214408
Stoichiometry of Fe3-delta O4(111) ultrathin films on Pt(111)
P. Morrall (2003)
10.2138/am.2010.3201
Crystallographic texture of the magnetite-hematite transformation: Evidence for topotactic relationships in natural samples from Quadrilátero Ferrífero, Brazil
P. Barbosa (2010)
10.1021/JP5037603
Oxidation of magnetite(100) to hematite observed by in situ spectroscopy and microscopy
K. McCarty (2014)
10.1038/npjquantmats.2016.27
Fe3O4 thin films: controlling and manipulating an elusive quantum material
X. Liu (2016)
10.1103/PHYSREVB.47.5881
Mössbauer study of the high-temperature phase of Co-substituted magnetites, CoxFe3-xO4. I. x <= 0.04.
De Grave E (1993)
10.1021/JA064380L
New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films
A. Kay (2006)
10.1016/J.SUSC.2012.11.005
The reduction and oxidation of Fe2O3(0001) surface investigated by scanning tunneling microscopy
Yuanyuan Tang (2013)
10.1016/J.TSF.2011.03.037
Electronic and magnetic properties of ultra-thin epitaxial magnetite films on MgO(001)
M. Zajac (2011)
10.1016/J.SUSC.2011.07.019
Growth of iron oxides on Ag(111) — Reversible Fe2O3/Fe3O4 transformation
Christoph Schlueter (2011)
10.1016/J.MATCHEMPHYS.2018.08.042
Synthesis and characterization of graphene modified by iron oxide nanoparticles
I. S. Lyubutin (2018)
10.1103/PHYSREVLETT.75.1961
Biphase Ordering of Iron Oxide Surfaces.
Condón (1995)
10.1016/J.SUSC.2009.10.008
Reduction of FeO/Pt(1 1 1) Thin Films by Exposure to Atomic Hydrogen
J. Knudsen (2010)
10.1021/JP066584U
Reduction of an α-Fe2O3(0001) Film Using Atomic Hydrogen
Weixin Huang (2007)
10.1103/PHYSREVB.96.195124
Understanding the Mössbauer spectrum of magnetite below the Verwey transition: Ab initio calculations, simulation, and experiment
R. Řezníček (2017)
10.1023/A:1013284217689
Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts
S. Li (2001)
10.1016/J.SUSC.2015.11.016
Phase transformations in thin iron oxide films: Spectromicroscopic study of velocity and shape of the reaction fronts☆
F. Genuzio (2016)
10.1016/J.SUSC.2015.04.025
Weak thermal reduction of biphase Fe2O3(0001) films grown on Pt(111): Sub-surface Fe2+ formation
H. Qiu (2015)
10.1006/JCAT.1995.1217
Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis. I. Characterization studies
D. Bukur (1995)
10.1103/PHYSREVB.85.075436
Growth and electronic and magnetic structure of iron oxide films on Pt(111)
N. Spiridis (2012)
10.1038/srep04043
Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films
Tim Luttrell (2014)
10.1016/S0079-6816(01)00056-9
Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers
W. Weiss (2002)
10.1021/JP300702D
Oxidation pathways in bicomponent ultrathin iron oxide films
M. Monti (2012)
10.1021/ACS.JPCC.8B11400
Superstructures on Epitaxial Fe3O4(111) Films: Biphase Formation versus the Degree of Reduction
N. Spiridis (2019)
10.1103/PHYSREV.183.383
Recoilless-Fraction Ratios forFe57in Octahedral and Tetrahedral Sites of a Spinel and a Garnet
G. A. Sawatzky (1969)
10.1016/J.SUSC.2005.11.026
Autocatalytic partial reduction of FeO(111) and Fe3O4(111) films by atomic hydrogen
Weixin Huang (2006)
10.1103/PHYSREVLETT.76.4175
Atomic-scale observations of alloying at the Cr-Fe(001) interface.
Davies (1996)
10.1039/B009288F
Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure
G. Ketteler (2001)
10.1016/J.SUSC.2009.06.006
The Fe3O4 origin of the “Biphase” reconstruction on α-Fe2O3(0 0 0 1)
C. Lanier (2009)
10.1063/1.4977491
Formation of a magnetite/hematite epitaxial bilayer generated with low energy ion bombardment
Sandra Ruiz-Gómez (2017)
10.1016/0920-5861(94)00135-O
Water-gas shift reaction: finding the mechanistic boundary
C. Rhodes (1995)
10.1006/JSSC.2001.9398
Preparation of (111)-oriented epitaxial Fe3-xO4 films on α-Al2O3 (0001) substrates by coating-pyrolysis process using postepitaxial topotaxy via (0001)-oriented α-Fe2O3
I. Yamaguchi (2002)
10.1016/S0039-6028(99)00643-3
Oxygen pressure dependence of the α-Fe2O3(0001) surface structure
S. Shaikhutdinov (1999)
10.1103/PHYSREVB.64.224407
Magnetic properties of Fe 2 O 3 (0001) thin layers studied by soft x-ray linear dichroism
S. Gota (2001)
10.1016/J.APCATA.2007.03.021
Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres
W. Jóźwiak (2007)
10.1016/S0378-7753(03)00074-0
Gold's future role in fuel cell systems
Don Cameron (2003)
10.1016/J.PROGSURF.2005.09.002
The surface and materials science of tin oxide
M. Batzill (2005)
10.1021/ja402599t
Insight into magnetite's redox catalysis from observing surface morphology during oxidation.
S. Nie (2013)
10.1111/J.1525-1314.1998.00144.X
Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals
L. Lagoeiro (2004)
10.1063/1.1457544
Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations
X. Xu (2002)
10.1021/JP504020A
Interconversion of α-Fe2O3 and Fe3O4 Thin Films: Mechanisms, Morphology, and Evidence for Unexpected Substrate Participation
F. Genuzio (2014)
10.1103/PHYSREVB.59.5201
Metal oxide heteroepitaxy: Stranski-Krastanov growth for iron oxides on Pt(111)
W. Weiss (1999)
10.1016/J.SUSC.2004.08.036
X-ray scattering study of the stoichiometric recovery of the α-Fe2O3(0001) surface
Choongik Kim (2004)
10.1016/S0040-6090(02)00306-1
Size effects in epitaxial films of magnetite
J. Korecki (2002)
10.1007/BF01021693
Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition
L. Häggström (1977)
10.1021/CM8030208
Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays
S. Mohapatra (2009)
10.1016/J.SUSC.2010.01.006
Preparation and characterization of Fe3O4(1 1 1) nanoparticles and thin films on Au(1 1 1)
X. Deng (2010)
10.1016/S0039-6028(97)00744-9
Scanning tunnelling microscopy studies of α-Fe2O3(0001)
N. G. Condon (1998)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar