Online citations, reference lists, and bibliographies.
← Back to Search

Nano-sized Local Magnetic Field Induced By Circular Motion Of Ions And Molecules In A Nanotorus Under Gigahertz Rotating Electric Fields

Maryam Kowsar, H. Sabzyan
Published 2019 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
ABSTRACT Recently, we reported molecular dynamics simulations of stable cyclotron motions of ions and water molecules in a carbon nanotorus, induced by different rotating electric fields (EFs). This study is devoted to the calculation and characterisation of the magnetic field (MF) induced by these cyclotron motions. Results show that carbon nanotorus containing ions or water molecules acts as an EF-to-MF transducer. Components of the instantaneous induced MF show large-scale oscillations superimposed by strong fluctuations arising respectively from overall circular motion and random collisions of moving species. Analysis of the space-dependencies of the induced MF components shows that the induced MF is maximum at the centre of the nanotorus. The MF induced by cyclotron motion of ions follows the orders B(Ca2+) > B(Na+) ≈ B(K+) at E = 1.0 V/nm and B(E = 1.0 V/nm) > B(E = 0.5 V/nm) > B(E = 0.1 V/nm). The time-averaged induced MF of the cyclotron motion of 81 water molecules is almost 102 times stronger than that of ions. The induced MF strength is decreased with increasing distance from nanotorus and decays effectively at about 17.3–18.1 and 15.9–18.2 nm along the z-axis of the nanotorus for ions and water molecules, respectively. The magnitude of the MF induced by cyclotron motions of water molecules and ions, respectively, decreases and increases in the nanotorus with freed carbon atoms. GRAPHICAL ABSTRACT
This paper references
10.1177/001452469000101110
"J."
G. G. Stokes (1890)
10.1038/2241334a0
Classical Electrodynamics
D. A. Dunnett (1969)
10.7312/li--16274-006
) 5
M. Handzic (1990)
10.2307/j.ctvx0787d.4
2 ,
P. Steerenberg (1993)
10.1103/PHYSREVLETT.70.1311
Measurements of Coulomb blockade with a noninvasive voltage probe.
Field (1993)
Phys
M. Field (1993)
10.1103/PhysRevLett.74.1123
Novel magnetic properties of carbon nanotubes.
Lǔ (1995)
Phys
J. P. Lu (1995)
10.1143/JPSJ.65.505
Energy bands of carbon nanotubes in magnetic fields
H. Ajiki (1996)
Soc
H. Ajiki (1996)
10.1103/PHYSREVLETT.80.1758
Effect of Coulomb Blockade on Magnetoresistance in Ferromagnetic Tunnel Junctions
S. Takahashi (1998)
10.1103/PhysRevLett.80.4526
Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures
L. Gorelik (1998)
Phys
L. Y. Gorelik (1998)
Phys
S. Takahashi (1998)
10.1038/17755
Aharonov–Bohm oscillations in carbon nanotubes
A. Bachtold (1999)
10.1119/1.19136
Classical Electrodynamics, 3rd ed.
J. Jackson (1999)
10.1209/EPL/I1999-00213-1
Current-induced magnetization reversal in magnetic nanowires
J. Wegrowe (1999)
Europhys
J.-E. Wegrowe (1999)
10.1126/SCIENCE.1065389
Spintronics: A Spin-Based Electronics Vision for the Future
S. Wolf (2001)
10.1103/PhysRevLett.87.276802
Quantized adiabatic charge transport in a carbon nanotube.
V. I. Tal'yanskii (2001)
10.1126/SCIENCE.1065824
Logic Circuits with Carbon Nanotube Transistors
Adrian Bachtold (2001)
10.1198/000313001750358509
APPL
Andrew G. Glen (2001)
Phys
V. I. Talyanskii (2001)
10.1016/S0375-9601(02)00255-4
Chiral anomaly in toroidal carbon nanotubes
K. Sasaki (2002)
10.1103/PHYSREVLETT.88.217206
Colossal paramagnetic moments in metallic carbon nanotori.
L. Liu (2002)
Phys
K. Sasaki (2002)
Jayanthi and S.Y.Wu
L. Liu (2002)
10.1063/1.1538595
Molecular dynamics simulations of microwave heating of water
Niall J. English (2003)
10.1063/1.1624363
Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields
Niall J. English (2003)
10.2307/j.ctvrnfqk1.10
? ? ? ? f ? ? ? ? ?
A. ADoefaa (2003)
10.1046/j.1365-2044.2003.30524.x
: 4
P. Kam (2003)
Phys
N. J. English (2003)
10.1016/J.CARBON.2004.06.032
Magnetoelectronic states of carbon toroids
F. Shyu (2004)
10.1021/NL0486968
Magnetism in Corrugated Carbon Nanotori: The Importance of Symmetry, Defects, and Negative Curvature
J. A. Rodrı́guez-Manzo (2004)
Carbon
F. L. Shyu (2004)
10.1002/ccd.25697
DES
George W. Vetrovec (2005)
10.1038/nature04235
Experimental observation of the quantum Hall effect and Berry's phase in graphene
Y. Zhang (2005)
10.1063/1.2199981
Persistent currents in carbon nanotori: Effects of structure deformations and chirality
Z. Zhang (2006)
10.1002/ANIE.200602471
Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy.
J. Kim (2006)
Angew
J. Kim (2006)
Phys
Z. Zhang (2006)
10.1002/ANIE.200601815
Spintronics: a challenge for materials science and solid-state chemistry.
C. Felser (2007)
10.1007/S10820-006-9036-7
Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures
Mario Encinosa (2007)
10.1002/jcc.20606
Electric field effects on the performance of a candidate multipole molecular switch: A quantum computational study
H. Sabzyan (2007)
10.1063/1.2511490
Orbiting atoms and C60 fullerenes inside carbon nanotori
Tamsyn A. Hilder (2007)
Condens
C.A.F. Vaz (2007)
Angew
C. Felser (2007)
Chem
H. Sabzyan (2007)
Phys
T. A. Hilder (2007)
10.1021/nn800182v
Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings.
Biswaroop Mukherjee (2008)
10.1103/PhysRevLett.100.047209
Magnetic correlations at graphene edges: basis for novel spintronics devices.
O. Yazyev (2008)
10.1103/PHYSREVLETT.100.230403
Schrödinger equation for a particle on a curved surface in an electric and magnetic field.
G. Ferrari (2008)
10.1088/0953-8984/20/01/015206
Magnetic response of carbon nanotori: the importance of curvature and disorder
C. Liu (2008)
10.1021/nn700147w
Electronic response properties of carbon nanotubes in magnetic fields.
D. Sebastiani (2008)
10.1016/J.PHYSB.2008.02.030
Magnetic response of chiral carbon nanotori: The dependence of torus radius
C. Liu (2008)
10.1142/S0217979208049030
Zeeman Effect on the Electronic Structure of Carbon Nanotori in a Strong Magnetic Field
C. P. Liu (2008)
10.1016/J.PHYSE.2007.11.035
Magnetic field induced by the carbon nanotubes current by magnetic force microscopy
K. Tsubaki (2008)
Condens
C. P. Liu (2008)
Int
C. P. Liu (2008)
Phys
G. Ferrari (2008)
Phys
O. V. Yazyev (2008)
Phys
K. Tsubaki (2008)
Physica B
C. P. Liu (2008)
10.1140/EPJB/E2009-00003-1
Curvature and external electric field effects on the persistent current in chiral toroidal carbon nanotubes
N. Xu (2009)
10.1016/j.otohns.2009.05.016
Nature
R. Rosenfeld (2009)
10.1080/08927020802353491
Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields
José-Antonio Gárate (2009)
10.1021/nl900186w
Controlled propulsion of artificial magnetic nanostructured propellers.
Ambarish Ghosh (2009)
10.1088/0957-4484/20/13/135102
Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy.
Y. Sun (2009)
10.1063/1.3227042
Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes.
José-Antonio Gárate (2009)
Mol
J.-A. Garate (2009)
Nano Lett
A. Ghosh (2009)
Phys
J.-A. Garate (2009)
Molecular Dynamics Simulation of the Diffusive Flow of Water Molecules Inside a Zigzag Carbon Nanotorus
S. Gholami (2009)
Eur
N. Xu (2009)
10.1016/j.phrs.2010.01.014
Magnetic nanoparticles and targeted drug delivering.
J. Chomoucka (2010)
10.1021/nn900858a
Single-file diffusion of water inside narrow carbon nanorings.
B. Mukherjee (2010)
Pharm
J. Chomoucka (2010)
10.1103/PhysRevB.84.085452
Carbon nanotubes in electric and magnetic fields
Jelena Klinovaja (2011)
10.1021/nn102590b
Magnetic response of single-walled carbon nanotubes induced by an external magnetic field.
Mikhail Kibalchenko (2011)
Phys
J. Klinovaja (2011)
10.1088/0953-8984/24/24/245304
Persistent currents in a graphene ring with armchair edges.
B. Huang (2012)
10.1016/J.PHYSB.2012.05.005
Carbon nanotori as traps for atoms and ions
Yue Chan (2012)
Condens
B.-L. Huang (2012)
Phys
Y. Chan (2012)
10.1063/1.4824441
Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field
Xiaopeng Li (2013)
10.1016/J.NANTOD.2013.08.009
Small power: Autonomous nano- and micromotors propelled by self-generated gradients
W. Wang (2013)
Nano Today
W. Wang (2013)
10.1007/s12274-014-0431-1
Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications
L. Liu (2014)
10.1021/la404805s
Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
Sergio De Luca (2014)
10.1002/adma.201400158
Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer.
Chao Wang (2014)
Langmuir
S. D. Luca (2014)
Nano Res
L. Liu (2014)
Adv
C. Wang (2014)
10.1039/c5cp00629e
Perspectives on external electric fields in molecular simulation: progress, prospects and challenges.
N. English (2015)
Phys
N. J. English (2015)
10.1063/1.4958740
Magnetization ground state and reversal modes of magnetic nanotori
S. Vojkovic (2016)
Phys
S. Vojkovic (2016)
10.1021/ACSPHOTONICS.7B00674
Novel Nanostructures and Materials for Strong Light–Matter Interactions
D. Baranov (2017)
10.1039/c7cp01270e
Molecular dynamics simulations of electric field induced water flow inside a carbon nanotorus: a molecular cyclotron.
H. Sabzyan (2017)
10.1007/s12274-017-1842-6
Ion separation and water purification by applying external electric field on porous graphene membrane
A. Lohrasebi (2018)
10.1080/08927022.2017.1366656
Molecular dynamics simulation of the cyclotron motion of ions in a carbon nanotorus induced by gigahertz rotating electric field
H. Sabzyan (2018)
10.1007/978-3-319-90713-0_3
Science
L. Christophorou (2018)
Mol
H. Sabzyan (2018)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar