Online citations, reference lists, and bibliographies.
← Back to Search

Hardness In Ag/Ni, Au/Ni And Cu/Ni Multilayers

K. O. Schweitz, J. Chevallier, J. Bøttiger, W. Matz, N. Schell
Published 2001 · Materials Science

Cite This
Download PDF
Analyze on Scholarcy
Share
Abstract By use of nanoindentation, the hardness was measured in dc-magnetronsputtered Ag/Ni, Au/Ni and Cu/Ni multilayers as a function of the modulation-period. In a limited modulation-period range, the expression kA -n , where k and n are fitting parameters and A is the modulation period, was fitted to the curves of hardness versus modulation period for the three types of multilayer. The exponent n of Ag/Ni was found to deviate by a factor of three from the n value of Au/Ni, which is surprising since no significant difference exists between the lattice parameters, shear moduli, morphologies and microstructures of the two systems. The results are discussed considering theoretical models and published experimental data.
This paper references
10.1016/S1359-6462(98)00196-1
Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites
A. Misra (1998)
10.1103/PHYSREVB.34.5955
Cumulative disorder and x-ray line broadening in multilayers.
Sevenhans (1986)
Mug. A, 81, 1. Phys. Rev. B, 34, 5955
F B Rasmussen
10.1557/S0883769400051502
Structure and strength of multilayers
B. Clemens (1999)
10.1149/1.2428700
Constitution of Binary Alloys
M. Hansen (1958)
10.1557/PROC-188-295
Mechanical Properties of Multilayered Copper-Nickel thin films Measured by Indentation Techniques
T. Schlesinger (1990)
10.1557/JMR.1994.3131
MECHANICAL PROPERTIES OF COMPOSITIONALLY MODULATED AU-NI THIN FILMS : NANOINDENTATION AND MICROCANTILEVER DEFLECTION EXPERIMENTS
S. P. Baker (1994)
Handbook of Thin Film Process Technology, edited by A. D
R C. (1997)
10.1016/0304-8853(93)90577-O
Superhardness effect in Au/Ni multilayers
A. Jankowski (1993)
10.1107/S0909049599010663
ROBL – a CRG beamline for radiochemistry and materials research at the ESRF
W. Matz (1999)
10.1103/PHYSREVB.45.9292
Structural refinement of superlattices from x-ray diffraction.
Fullerton (1992)
10.1088/0370-1301/64/9/303
The Deformation and Ageing of Mild Steel: III Discussion of Results
E. Hall (1951)
10.1080/01418619908210311
Hardness enhancement and elastic modulus behaviour in sputtered Ag/Ni multilayers with different modulation wavelengths
H. Geisler (1999)
10.1557/PROC-188-289
Mechanical Properties of Compositionally Modulated Au-Ni thin films using Indentation and Microbeam Deflection Techniques
S. P. Baker (1990)
10.1557/JMR.1992.1564
An improved technique for determining hardness and elastic-modulus using load and displacement sensi
W. Oliver (1992)
10.1080/01418610108216613
The mechanism of degradation of Ag/Ni multilayers deposited at different temperatures
K. O. Schweitz (2001)
10.1016/S0040-6090(94)06490-3
Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties
N. G. Chechenin (1995)
10.1063/1.103070
Nanoindentation study of the mechanical properties of copper‐nickel multilayered thin films
R. Cammarata (1990)
10.1557/PROC-130-129
Gold-Nickel Multilayer Films: Structure-Property Correlations
S. Nutt (1988)
10.1016/0965-9773(95)00250-I
Hall-Petch relations for multilayered materials
P. Anderson (1995)
10.1063/1.359467
Model of superlattice yield stress and hardness enhancements
X. Chu (1995)
10.1063/1.373830
Interface stress in Au/Ni multilayers
K. O. Schweitz (2000)
10.1557/PROC-362-67
Interfacial Strengthening in Semi-Coherent Metallic Multilayers
S. I. Rao (1994)
10.1063/1.331134
Determination of the primary elastic constants from thin foils having a strong texture
D. Baral (1982)
10.1063/1.355787
NANOINDENTATION OF AG/NI MULTILAYERED THIN FILMS
J. A. Ruud (1994)



This paper is referenced by
10.1016/J.ACTAMAT.2006.07.043
Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers
S. Wen (2007)
10.1007/s11661-013-1749-0
Evolution of Microstructure and Texture During Deformation and Recrystallization of Heavily Rolled Cu-Cu Multilayer
K. S. Suresh (2013)
10.1016/J.ACTAMAT.2005.06.025
Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites
A. Misra (2005)
10.1016/j.commatsci.2019.109272
Uniaxial tension deformation study of copper/nickel laminated composites: Effects of lamella number and interlamellar spacing
Yang Wang (2020)
10.1016/J.MSEA.2016.03.112
Interfacial effect on strengthening nanoscale metallic multilayers - a combined Hall-Petch relation and atomistic simulation study
Y. Kong (2016)
10.1016/J.IJPLAS.2014.01.008
Texture evolution in two-phase Zr/Nb lamellar composites during accumulative roll bonding
M. Knezevic (2014)
10.1016/J.PHYSE.2015.08.020
MD simulation of nanoindentation on (001) and (111) surfaces of Ag–Ni multilayers
Y. Zhao (2015)
10.1016/J.ACTAMAT.2019.06.028
Size dependent strengthening in high strength nanotwinned Al/Ti multilayers
Y. Zhang (2019)
10.1088/0965-0393/20/3/035021
Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields
Lun Yang (2012)
10.1016/J.ACTAMAT.2015.12.024
Anisotropic dynamic compression response of a directionally-cast silver–copper eutectic alloy
O. T. Kingstedt (2016)
10.1080/09500831003745241
Scale-dependent fracture mode in Cu–Ni laminate composites
X. Zhu (2010)
10.1063/1.1621083
Super hardening and deformability in epitaxially grown W/NbN nanolayers under shallow and deep nanoindentations
B. M. Ennis (2003)
10.1063/1.3452350
Two-dimensional quasicontinuum analysis of the strengthening and weakening effect of Cu/Ag interface on nanoindentation
J. Li (2010)
10.1016/J.IJSOLSTR.2006.06.007
A rate-dependent three-dimensional free energy model for ferroelectric single crystals
Sang-joo Kim (2007)
10.1016/J.SURFCOAT.2004.02.006
Investigation of nanoindentation on Co/Mo multilayers by the continuous stiffness measurement technique
G. Yang (2005)
10.1080/14786430601175532
Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates
A. Jankowski (2007)
10.1016/J.MSEA.2010.10.101
High strength Mg/Nb nanolayer composites
B. Ham (2011)
10.1039/d0nr02483j
Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys.
Y. Zhao (2020)
10.1016/J.IJENGSCI.2007.05.003
A rate-dependent thermo-electro-mechanical free energy model for perovskite type single crystals
Sang-joo Kim (2007)
10.1016/J.APSUSC.2015.08.012
MD simulation of growth of Pd on Cu (1 1 1) and Cu on Pd (1 1 1) substrates
Tao Fu (2015)
10.1016/J.MSEA.2016.01.055
Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers
Tao Fu (2016)
10.1016/J.MSEA.2006.12.012
Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers
S. Wen (2007)
10.1007/S42452-018-0120-X
Zn–Fe multilayered alloy coatings produced by electrodeposition
C. Panagopoulos (2018)
10.1063/1.2735670
Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation
W. S. Lai (2007)
10.1016/J.COSSMS.2010.09.002
An overview of interface-dominated deformation mechanisms in metallic multilayers
J. Wang (2011)
10.1007/s10853-019-03533-5
Effect of cooling rate on the structure and nanotribology of Ag–Cu nano-eutectic alloys
S. K. Kwon (2019)
10.1016/J.ACTAMAT.2016.05.030
Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers
J. Li (2016)
10.1557/PROC-1224-FF08-03
Interface Effects on the Mechanical Properties of Nanocrystalline Nanolaminates
Alan F. Jankowski (2009)
10.1016/J.SURFCOAT.2008.06.110
Vapor deposition and characterization of nanocrystalline nanolaminates
A. Jankowski (2008)
10.1557/JMR.2019.22
A review on cyclic deformation damage and fatigue fracture behavior of metallic nanolayered composites
G. Zhang (2019)
10.1016/J.SURFCOAT.2013.05.051
Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface
K. Yu (2013)
10.1016/J.SCRIPTAMAT.2007.06.038
Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers
Bong C. Kang (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar