Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

An Extensive Review Of Studies On Mycobacterium Cell Wall Polysaccharide-related Oligosaccharides – Part I: Synthetic Studies On Arabinofuranosyl Oligosaccharides

L. Wang, Zhongwu Guo
Published 2019 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Abstract Lipoarabinomannan (LAM), mannosyl LAM (ManLAM), and mycolyl-arabinogalactan (mAG) are unique and ubiquitous cell wall constituents of Mycobacterium tuberculosis (M. tb), the bacterium causing tuberculosis (TB), one of the deadliest diseases worldwide. It has been well documented that LAM, ManLAM, and mAG play an important role in mycobacterial infections and in the elicitation of specific immune responses against M. tb in the host. Therefore, LAM, ManLAM, mAG, and related molecules are attractive targets for the development of novel diagnostic and therapeutic strategies for TB. Accordingly, great research efforts have been spent on the chemical synthesis and biological studies of mycobacterium-related arabinofuranosyl oligosaccharides and their mimetics and conjugates. This article provides an extensive review about the progresses in this area. Due to the page limit of the journal, this review is published separately in three parts. Part I is focused on various glycosylation methods or strategies and protection tactics for stereoselective and stereospecific construction of α- and β-arabinofuranosyl linkages, as well as their applications to the synthesis of simple to highly complex mycobacterium-related arabinofuranosyl oligosaccharides containing only α-linked or both α- and β-linked arabinofuranosyl residues. GRAPHICAL ABSTRACT
This paper references
10.1093/GLYCOB/CWM010
The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates.
S. Berg (2007)
10.1246/BCSJ.67.3057
The Total Synthesis of AB3217-A, a Novel Anti-mite Substance, via Intermolecular Etherification and Intramolecular Glycosylation.
M. Nakata (1994)
10.1002/ANIE.199417651
A Novel Approach to the Stereoselective Synthesis of β-Mannosides
Y. Ito (1994)
10.1021/CR990307K
Intramolecular o-glycoside bond formation.
K. H. Jung (2000)
10.1002/anie.201511695
Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent of Mycobacterium tuberculosis Cell Wall Lipoarabinomannan.
Bijoyananda Mishra (2016)
10.1021/JO062411P
Facile oxidative cleavage of 4-O-benzyl ethers with dichlorodicyanoquinone in rhamno- and mannopyranosides.
D. Crich (2007)
10.1016/S0008-6215(00)82424-6
A potentially versatile synthesis of glycosides
R. Ferrier (1973)
10.1128/IAI.60.3.1249-1253.1992
Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor.
D. Chatterjee (1992)
NMR spectral study of a- and b-L-arabinofuranosides
K. Mizutani (1989)
10.1021/BI060688D
Sequencing of oligoarabinosyl units released from mycobacterial arabinogalactan by endogenous arabinanase: identification of distinctive and novel structural motifs.
Arwen Lee (2006)
10.1007/978-3-642-80166-2_4
Entry of Mycobacterium tuberculosis into mononuclear phagocytes.
L. Schlesinger (1996)
10.1016/J.TETLET.2012.03.016
Concise synthesis of an arabinofuranose hexasaccharide present in the cell wall of Mycobacterium tuberculosis
Karnakar C. Reddy (2012)
10.1021/JO00107A008
n-Pentenyl Glycoside Based Methodology for Determining the Relative Reactivities of Variously Protected Pairs of Glycosides
B. G. Wilson (1995)
10.1021/acs.joc.5b00964
Influence of Steric Crowding on Diastereoselective Arabinofuranosylations.
M. Islam (2015)
10.1128/IAI.64.3.683-690.1996
Immunopathology of tuberculosis: roles of macrophages and monocytes.
M. Fenton (1996)
10.1002/JCCS.201300481
Synthesis of Phosphatidylinositol Mannosides
P. S. Patil (2014)
10.1039/c1cc13134f
Propargyl/methyl furanosides as potential glycosyl donors.
Srinivasa Rao Vidadala (2011)
Glycolipid targets of CD1-mediated
D. B. Moody (2001)
10.1007/978-3-642-99497-5_16
Über Thiophenol‐glucoside
E. Fischer (1909)
Synthesis of methyl beta-D-arabinofuranoside 5-[1D (and L)-myo-inositol 1-phosphate], the capping motif of the lipoarabinomannan of Mycobacterium smegmatis.
J. Désiré (1999)
10.1039/B110071H
O-Glycosylations under neutral or basic conditions
K. Jensen (2002)
10.1002/CHIN.199307274
β‐Sialyl Phosphite and Phosphoramidite: Synthesis and Application to the Chemoenzymatic Synthesis of CMP‐Sialic Acid and Sialyl Oligosaccharides.
H. Kondo (1993)
10.1039/c5ob00736d
Anatomy of gold catalysts: facts and myths
Beatrice Ranieri (2015)
10.3762/bjoc.8.183
Automated synthesis of sialylated oligosaccharides
D. Esposito (2012)
10.1080/07328308508070184
A General Method for Stepwise Elongation of the (1→5)-α-D-Arabinofuranan Chain
Kenichi Hatanaka (1985)
10.1021/jo300084g
Regioselective glycosylation method using partially protected arabino- and galactofuranosyl thioglycosides as key glycosylating substrates and its application to one-pot synthesis of oligofuranoses.
Li-Min Deng (2012)
10.1081/CAR-120016485
DEHYDRATIVE GLYCOSYLATION WITH 1-HYDROXY DONORS
D. Gin (2002)
10.1016/S0040-4039(99)02046-8
Use of 1,2-dichloro 4,5-dicyanoquinone (DDQ) for cleavage of the 2-naphthylmethyl (NAP) group
J. Xia (2000)
10.1021/JA993543L
Arabinofuranosyl Oligosaccharides from Mycobacteria: Synthesis and Effect of Glycosylation on Ring Conformation and Hydroxymethyl Group Rotamer Populations
F. D'Souza (2000)
10.1021/JA01607A027
A Correlation of Reaction Rates
G. Hammond (1955)
10.1021/JA0629817
Practical Approach for the Stereoselective Introduction of β-Arabinofuranosides
Xiangming Zhu (2006)
10.1016/S0040-4020(01)86571-6
Stereoselective synthesis of α-linked saccharides by use of per O-benzylated 2-pyridyl 1-thio hexopyranosides as glycosyl donors and methyl iodide as an activator
H. B. Mereyala (1991)
10.1016/j.carres.2003.10.015
Synthesis of mannose-containing analogues of (1-->6)-branched (1-->3)-glucohexaose (I).
Z. Wu (2003)
10.1021/JO010910E
Arabinofuranosides from mycobacteria: synthesis of a highly branched hexasaccharide and related fragments containing beta-arabinofuranosyl residues.
H. Yin (2002)
10.1016/j.vaccine.2015.08.033
Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis?
J. I. Moliva (2015)
10.1055/S-0034-1379929
Gold- and Silver-Catalyzed Glycosylation with Pyranone Glycosyl Donors: An Efficient and Diastereoselective Synthesis of α-Anomers
Wen-feng Liu (2015)
10.1021/ol401166x
Tuning effect of silyl protecting groups on the glycosylation reactivity of arabinofuranosyl thioglycosides.
Xing-Yong Liang (2013)
10.1128/IAI.59.5.1755-1761.1991
Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages.
J. Chan (1991)
10.1039/c0ob00423e
Synthesis and NMR spectroscopic analysis of acylated pentasaccharide fragments of mycobacterial arabinogalactan.
C. Liu (2011)
10.1128/IAI.56.5.1232-1236.1988
Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages.
L. Sibley (1988)
10.1021/OL0510668
Acceptor-dependent stereoselective glycosylation: 2'-CB glycoside-mediated direct beta-D-arabinofuranosylation and efficient synthesis of the octaarabinofuranoside in mycobacterial cell wall.
Y. Lee (2005)
10.1016/J.TETLET.2011.02.019
Formation of orthoester-linked d-arabinofuranose oligosaccharides and their isomerization into the corresponding glycosides
P. I. Abronina (2011)
10.1021/ja806283e
Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from Mycobacterium tuberculosis.
S. Boonyarattanakalin (2008)
10.1128/CMR.00042-10
HIV and Tuberculosis: a Deadly Human Syndemic
C. K. Kwan (2011)
10.1002/(SICI)1521-3773(19990503)38:9<1247::AID-ANIE1247>3.0.CO;2-J
Highly Regio- and Stereoselective Synthesis of Mannose-Containing Oligosaccharides with Acetobromo Sugars as the Donors and Partially Protected Mannose Derivatives as the Acceptors via Sugar Orthoester Intermediates.
W. Wang (1999)
10.1016/j.carres.2008.04.031
Intramolecular aglycon delivery.
I. Cumpstey (2008)
10.1016/J.BMC.2005.12.037
Synthesis and TNF-alpha inducing activities of mycoloyl-arabinan motif of mycobacterial cell wall components.
A. Ishiwata (2006)
10.1021/JO980823V
Rational Design of Benzyl-Type Protecting Groups Allows Sequential Deprotection of Hydroxyl Groups by Catalytic Hydrogenolysis
M. Gaunt (1998)
10.1046/j.1365-2567.2001.01326.x
Glycolipid targets of CD1‐mediated T‐cell responses
D. Moody (2001)
10.1021/OL005907G
The first total synthesis of a highly branched arabinofuranosyl hexasaccharide found at the nonreducing termini of mycobacterial arabinogalactan and lipoarabinomannan.
F. D'souza (2000)
10.1002/anie.200802036
New principles for glycoside-bond formation.
X. Zhu (2009)
10.1021/JA981041M
Exploring the Mechanism of Neighboring Group Assisted Glycosylation Reactions
T. Nukada (1998)
10.1021/ja109932t
Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall.
A. Ishiwata (2011)
10.1021/JO981135E
New Synthetic Methodology for Regio- and Stereoselective Synthesis of Oligosaccharides via Sugar Ortho Ester Intermediates.
W. Wang (1998)
10.1021/ol101520q
Beta-selective arabinofuranosylation using a 2,3-O-xylylene-protected donor.
A. Imamura (2010)
10.1002/1099-0690(200211)2002:22<3864::AID-EJOC3864>3.0.CO;2-8
Elaboration of Monoarabinofuranosidic Building Blocks
S. Sanchez (2002)
10.1146/annurev-micro-091014-104121
Assembly of the Mycobacterial Cell Wall.
Monika Jankute (2015)
10.1039/b806707d
Gold mediated glycosylations: selective activation of propargyl 1,2-orthoesters in the presence of aglycones containing a propargyl moiety.
G. Sureshkumar (2008)
10.1021/acschembio.6b00898
Disruption of Mycobacterial AftB Results in Complete Loss of Terminal β(1 → 2) Arabinofuranose Residues of Lipoarabinomannan
Monika Jankute (2017)
10.1002/EJOC.200300303
Synthesis of Oligoarabinofuranosides from the Mycobacterial Cell Wall
Karine Marotte (2003)
10.1111/j.1574-6976.2008.00118.x
Influence of BCG vaccine strain on the immune response and protection against tuberculosis.
N. Ritz (2008)
10.1016/J.CARRES.2005.01.011
Synthesis of galactose-containing analogues of (1-->6)-branched (1-->3)-glucohexaose and its lauryl glycoside.
Guohua Zhang (2005)
10.1016/j.carres.2008.09.006
Synthesis of beta-D-arabinofuranosides: stereochemical differentiation between D- and L-enantiomers.
Y. Wang (2008)
10.1016/J.TETLET.2007.07.015
Propargyl 1,2-orthoesters as glycosyl donors: stereoselective synthesis of 1,2-trans glycosides and disaccharides
G. Sureshkumar (2007)
10.1016/0008-6215(89)84018-2
N.m.r. spectral study of α- and β-l-arabinofuranosides
Kenji Mizutani (1989)
10.1126/SCIENCE.1057324
Automated Solid-Phase Synthesis of Oligosaccharides
O. Plante (2001)
10.1080/07328303.2010.508141
Neighboring Group Participation in Glycosylation Reactions by 2,6-Disubstituted 2-O-Benzoyl groups: A Mechanistic Investigation
R. J. Williams (2010)
10.1016/j.carres.2017.11.002
Arabinofuranose 1,2,5-orthobenzoate as a single precursor of linear α(1 → 5)-linked oligoarabinofuranosides.
M. Panova (2018)
Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro.
G. Kaplan (1987)
10.1016/S0040-4039(99)02067-5
Glucuronide and sulfate conjugates of ICI 182,780, a pure anti-estrogenic steroid. Order of addition, catalysis and substitution effects in glucuronidation
J. R. Ferguson (2000)
10.1016/S0140-6736(10)60410-2
Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis
N. Gandhi (2010)
10.1111/j.1365-2958.2004.04183.x
Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response
V. Briken (2004)
10.1039/A809774G
Recent developments in oligosaccharide synthesis
B. Davis (2000)
10.1021/OL007008Y
Stereocontrolled synthesis of 2,3-anhydro-beta-d-lyxofuranosyl glycosides.
R. R. Gadikota (2001)
10.1002/ANIE.200390139
Dual stereoselectivity of 1-(2'-carboxy)benzyl 2-deoxyglycosides as glycosyl donors in the direct construction of 2-deoxyglycosyl linkages.
K. S. Kim (2003)
10.1039/A707796C
Synthesis of pentaarabinofuranosyl structure motif A of Mycobacterium tuberculosis
H. B. Mereyala (1998)
10.1002/(SICI)1521-3757(19990503)111:9<1330::AID-ANGE1330>3.0.CO;2-R
Hochregio‐ und hochstereoselektive Synthese von mannosehaltigen Oligosacchariden mit Acetylbromzuckern als Donoren und teilweise geschützten Mannosederivaten als Acceptoren über Zuckerorthoester‐Zwischenstufen
Wei Wang (1999)
10.1039/c004281a
Recent advances in stereoselective glycosylation through intramolecular aglycon delivery.
A. Ishiwata (2010)
10.1021/OL062198J
Stereoselective synthesis of a fragment of mycobacterial arabinan.
A. Ishiwata (2006)
10.1002/CHEM.200390026
Total synthesis of woodrosin I--part 2: final stages involving RCM and an orthoester rearrangement.
A. Fürstner (2003)
10.1016/S0040-4020(01)00959-0
6-S-Phenyl-glycopyranosides as ready precursors to the synthesis of glycuronides
B. Yu (2001)
10.1002/CHEM.200304856
Orthoesters versus 2-O-acyl glycosides as glycosyl donors: theorectical and experimental studies.
B. Fraser-Reid (2003)
10.1021/OL7019108
Stereoselective synthesis of 2-deoxy-furanosides from 2,3-anhydro-furanosyl thioglycosides.
Dianjie Hou (2007)
10.1016/j.carres.2015.09.009
Propargyl 1,2-orthoesters for stereoselective synthesis of thioglycosides and 1-thiotrehaloses.
B. Venkateswara Rao (2015)
10.1021/ACS.JOC.6B01723
Phthalic Anhydride-Mediated Direct Glycosylation of Anomeric Hydroxy Arabinofuranose: Synthesis of Repeating Oligoarabinofuranoside and Tetradecasaccharide Arabinan Motif of Mycobacterial Cell Wall.
B. Lee (2016)
10.1021/JA993349Z
A Stereoelectronic Model To Explain the Highly Stereoselective Reactions of Nucleophiles with Five-Membered-Ring Oxocarbenium Ions
Catharine H. Larsen (1999)
10.1164/rccm.200907-0989OC
HIV coinfection in multidrug- and extensively drug-resistant tuberculosis results in high early mortality.
N. Gandhi (2010)
10.1016/J.TETLET.2006.04.107
Chemical trans-glycosylation of bioactive glycolinkage: synthesis of an α-lycotetraosyl cholesterol
T. Ikeda (2006)
10.1021/acschembio.7b00394
The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis.
Danielle D. Barnes (2017)
10.1016/S0040-4039(01)01133-9
Synthesis of arabinofuranosides via low-temperature activation of thioglycosides
H. Yin (2001)
10.1021/ol400931p
Facile synthesis of β- and α-arabinofuranosides and application to cell wall motifs of M. tuberculosis.
Shivaji A Thadke (2013)
10.1039/c2cc32649c
Versatile gold catalyzed transglycosidation at ambient temperature.
A. K. Kayastha (2012)
10.1016/J.BMCL.2004.04.103
Synthesis of a key Mycobacterium tuberculosis biosynthetic phosphoinositide intermediate.
K. Jayaprakash (2004)
10.1039/B413694B
The antituberculosis, antitumor, multibranched dodecafuranoarabinan of Mycobacterium species has been assembled from a single n-pentenylfuranoside source.
Jun Lu (2005)
10.1007/s11172-014-0459-0
4-(2-Chloroethoxy)phenol-terminated oligomerization of 3-O-benzoyl-β-d-arabinofuranose 1,2,5-orthobenzoate
N. M. Podvalnyy (2014)
Studies toward the total synthesis of carba analogue of Motif of M. TB cell wall
M. K. Gurjar (2009)
10.1021/JA062425C
Propargyl Glycosides as Stable Glycosyl Donors: Anomeric Activation and Glycoside Syntheses
Srinivas Hotha and (2006)
10.1002/CHIN.200039238
Recent Advances in the Construction of β‐D‐Mannose and β‐D‐Mannosamine Linkages
Jonathan J. Gridley (2000)
10.1021/jo901837z
Orthogonal activation of propargyl and n-pentenyl glycosides and 1,2-orthoesters.
Srinivasa Rao Vidadala (2009)
10.1021/JA00948A041
Long-Range Effects of Acyl Groups in the Solvolysis of Glycofuranosyl Halides. The Synthesis of 2,3-Di-O-benzyl-5-O-p-nitrobenzoyl-α-D- arabinofuranosyl Chloride and of 2-O-Benzyl- 3,5-di-O-p-nitrobenzoyl-α-D-arabinofuranosyl Chloride
C. P. Glaudemans (1965)
10.1016/S0040-4020(02)00671-3
Comparing n-pentenyl orthoesters and n-pentenyl glycosides as alternative glycosyl donors
M. Mach (2002)
10.1016/S0008-6215(00)85500-7
Syntheses of (1→3)-,(1→4)-, and (1→5)-linked disaccharides from tritylated monosaccharides
Yakov V. Wozney (1979)
10.1016/S0065-2318(08)60091-8
Thioglycosides as glycosyl donors in oligosaccharide synthesis.
P. Garegg (1997)
10.1146/annurev.med.60.053107.103955
Extensively drug-resistant tuberculosis: a new face to an old pathogen.
S. Shenoi (2009)
10.1016/J.CARRES.2006.03.029
A concise and practical synthesis of antigenic globotriose, α-D-Gal-(1→4)-β-D-Gal-(1→4)-β-D-Glc
L. Chen (2006)
10.1002/CHIN.200125179
Stereocontrolled Synthesis of 2,3‐Anhydro‐β‐D‐lyxofuranosyl Glycosides.
R. R. Gadikota (2001)
10.1021/JA0349610
2,3-anhydrosugars in glycoside bond synthesis. NMR and computational investigations into the mechanism of glycosylations with 2,3-anhydrofuranosyl glycosyl sulfoxides.
C. Callam (2003)
10.1002/EJOC.200300210
Some Key Experimental Features of a Modular Synthesis of Heparin-Like Oligosaccharides
J. D. Paz (2003)
10.1002/CHIN.200203203
Synthesis of D-Arabinofuranosides Using Propane-1,3-diyl Phosphate as the Anomeric Leaving Group.
Y. Li (2010)
10.1002/CHIN.201111208
Direct Glycosylation with Anomeric Hydroxy Sugars by Activation with 3‐Fluorophthalic Anhydride and Trifluoromethanesulfonic Anhydride.
Ju Yuel Baek (2011)
10.1007/128_2010_107
Effect of electron-withdrawing protecting groups at remote positions of donors on glycosylation stereochemistry.
K. S. Kim (2011)
10.1007/BF01049674
Glycosylation reactions — present status future directions
D. Whitfield (2005)
Stereoselective synthesis of 2-deoxy-furanosides from 2,3anhydro-furanosyl thioglycosides
D. Hou (2007)
10.1021/JA015842S
2-(Hydroxycarbonyl)benzyl glycosides: a novel type of glycosyl donors for highly efficient beta-mannopyranosylation and oligosaccharide synthesis by latent-active glycosylation.
K. S. Kim (2001)
10.1086/344657
Tuberculosis drug resistance: a global threat.
J. Nachega (2003)
10.1093/OXFORDJOURNALS.JBCHEM.A131874
Structural and immunochemical studies on D-arabino-D-mannans and D-mannans of Mycobacterium tuberculosis and other Mycobacterium species.
A. Misaki (1977)
10.1016/S1472-9792(02)00089-6
Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis.
P. Brennan (2003)
10.1016/J.TETLET.2003.11.140
Sugar conjugates of fulvestrant (ICI 182,780): efficient general procedures for glycosylation of the fulvestrant core
M. Thompson (2004)
10.1080/17512433.2017.1259066
The pharmacological challenges of treating tuberculosis and HIV coinfections
E. Egelund (2017)
10.1111/j.1365-2958.2008.06354.x
Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1→3) arabinofuranosyltransferase
H. Birch (2008)
10.1128/CVI.00472-10
Analysis of Antibody Responses to Mycobacterium leprae Phenolic Glycolipid I, Lipoarabinomannan, and Recombinant Proteins To Define Disease Subtype-Specific Antigenic Profiles in Leprosy
J. Spencer (2010)
10.1021/ja0629817.s002
Practical approach for the stereoselective introduction of beta-arabinofuranosides.
Xiangming Zhu (2006)
10.1038/ncomms9533
Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis
Deepak Kaushal (2015)
10.1016/S0040-4039(00)60022-9
Efficient sialylation with phosphite as leaving group
T. J. Martin (1992)
10.1021/ja710935z
Stereoselective direct glycosylation with anomeric hydroxy sugars by activation with phthalic anhydride and trifluoromethanesulfonic anhydride involving glycosyl phthalate intermediates.
K. S. Kim (2008)
10.1002/ANIE.200602448
Gold(I)-catalyzed intermolecular cyclopropanation of enynes with alkenes: trapping of two different gold carbenes.
S. López (2006)
10.1081/CAR-120021696
Synthesis of Oligosaccharide Fragments of Mannosylated Lipoarabinomannan Appropriately Functionalized for Neoglycoconjugate Preparation
R. R. Gadikota (2003)
10.1016/J.CARRES.2006.09.022
A study of n-pentenylorthoesters having manno, gluco and galacto configurations in regioselective glycosylations.
K. Jayaprakash (2007)
10.1002/IJCH.201400194
Lipooligosaccharides from Mycobacteria: Structure, Function, and Synthesis
B. Bai (2015)
10.1016/S0096-5332(08)60152-6
Neighboring-group participation in sugars.
L. Goodman (1967)
10.1002/ANIE.200500505
Synthesis of a lipomannan component of the cell-wall complex of Mycobacterium tuberculosis is based on Paulsen's concept of donor/acceptor "match".
K. Jayaprakash (2005)
10.1002/CHIN.200551176
An Efficient Synthesis of a Dimer of the Tetrasaccharide Present in Motif B of the Mycobacterium tuberculosis Cell Wall.
Xiangdong Mei (2005)
10.1016/s0021-9258(18)92870-x
Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis.
D. Chatterjee (1991)
10.1002/anie.201100514
An efficient approach to the synthesis of nucleosides: gold(I)-catalyzed N-glycosylation of pyrimidines and purines with glycosyl ortho-alkynyl benzoates.
Q. Zhang (2011)
10.1039/B417138C
Thioglycosides in sequential glycosylation strategies.
J. Codée (2005)
10.1021/JA069218X
Automated synthesis of the tumor-associated carbohydrate antigens Gb-3 and Globo-H: incorporation of alpha-galactosidic linkages.
D. Werz (2007)
10.1074/jbc.M700271200
Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis*
Mathias Seidel (2007)
10.1093/GLYCOB/11.9.107R
Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis.
D. Crick (2001)
10.1016/j.carres.2015.01.003
Synthesis and biotinylation of oligosaccharide fragments of mannosylated and 5-deoxy-5-methylthio-xylofuranosylated lipoarabinomannan from Mycobacterium tuberculosis.
P. Mandal (2015)
10.1002/ANIE.198007311
Facile Synthesis of α‐ and β‐O‐Glycosyl Imidates; Preparation of Glycosides and Disaccharides
R. Schmidt (1980)
10.1021/JA0723380
Ligand specificity of CS-35, a monoclonal antibody that recognizes mycobacterial lipoarabinomannan: a model system for oligofuranoside-protein recognition.
C. Rademacher (2007)
10.1016/j.carres.2010.11.002
Ring opening of acylated β-d-arabinofuranose 1,2,5-orthobenzoates with nucleophiles allows access to novel selectively-protected arabinofuranose building blocks.
N. M. Podvalnyy (2011)
10.1021/JO061233X
Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis.
A. Hoelemann (2006)
10.1039/C39870001462
An oxidative/reductive, non-hydrolytic procedure for ‘unravelling’ complex acetals (glycosides): a possible chemical role for the exo-anomeric effect
D. Mootoo (1987)
10.1351/pac199365040779
The chemistry of N-pentenyl glycosides: Synthetic, theoretical, and mechanistic ramifications
B. Fraser-Reid (1993)
10.1002/CHIN.200927183
Studies Toward the Total Synthesis of Carba Analogue of Motif C of M. TB Cell Wall AG Complex.
M. Gurjar (2009)
10.1016/J.CARRES.2006.09.025
Recent studies on reaction pathways and applications of sugar orthoesters in synthesis of oligosaccharides.
F. Kong (2007)
10.1039/C39880000823
Direct elaboration of pent-4-enyl glycosides into disaccharides
B. Fraser-Reid (1988)
10.1111/j.1574-6976.2011.00276.x
Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction
A. Mishra (2011)
10.1002/1521-3773(20020617)41:12<2097::AID-ANIE2097>3.0.CO;2-T
Total synthesis of woodrosin I.
A. Fürstner (2002)
10.1021/JA00401A051
Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin
R. Woodward (1981)
10.1081/CAR-120016487
d-ARABINOFURANOSIDES FROM MYCOBACTERIA: SYNTHESIS AND CONFORMATION
T. Lowary (2002)
Synthesis and TNF-a inducing activities of mycoloyl-arabinan motif of mycobacterial cell wall components. Bioorg
A. Ishiwata (2006)
Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from JOURNAL OF CARBOHYDRATE CHEMISTRY 323 Mycobacterium tuberculosis
S. Boonyarattanakalin (2008)
10.1002/CHIN.199746221
Novel Regioselective Glycosylations for the Convergent and Chemoselective Assembly of Oligosaccharides.
G. Boons (1997)
Automated synthesis of the tumorassociated carbohydrate antigens Gb-3 and globo-H: Incorporation of a-galactosidic linkages
D. B. Werz (2007)
10.3987/COM-08-S(F)59
Studies toward the total synthesis of carba analogue of motif C of M. Tb cell wall Ag complex
M. K. Gurjar (2009)
10.1021/CR60260A001
Mechanism in carbohydrate chemistry
B. Capon (1969)
10.1016/S0008-6215(00)86147-9
A new approach to the synthesis of oligosaccharides
A. F. Bochkov (1975)
10.1021/jo501052y
Gold(III)-catalyzed glycosidations for 1,2-trans and 1,2-cis furanosides.
Shivaji A Thadke (2014)
10.1246/CL.1983.935
STEREOSELECTIVE SYNTHESIS OF 1,2-CIS-GLYCOFURANOSIDES USING GLYCOFURANOSYL FLUORIDES
T. Mukaiyama (1983)
10.1002/CHIN.200201205
2-(Hydroxycarbonyl)benzyl Glycosides: A Novel Type of Glycosyl Donors for Highly Efficient β-Mannopyranosylation and Oligosaccharide Synthesis by Latent-Active Glycosylation.
K. S. Kim (2002)
10.1126/science.274.5292.1520
Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library
R. Liang (1996)
10.1021/JA072892+
Synthesis of the docosanasaccharide arabinan domain of mycobacterial arabinogalactan and a proposed octadecasaccharide biosynthetic precursor.
M. Joe (2007)
10.1021/JA067885K
Propargyl glycosides as stable glycosyl donors: anomeric activation and glycoside syntheses.
S. Hotha (2006)
10.1016/J.TET.2003.12.022
2,3-Anhydrosugars in glycoside bond synthesis. Application to the preparation of C-2 functionalized α-d-arabinofuranosides
Oana M. Cociorva (2004)
10.1016/J.CARRES.2007.10.035
Indirect approach to C-3 branched 1,2-cis-glycofuranosides: synthesis of aceric acid glycoside analogues.
Marcelo T de Oliveira (2008)
10.1039/c000604a
Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan.
B. Cao (2010)
10.1021/JA00048A085
β-sialyl phosphite and phosphoramidite : synthesis and application to the chemoenzymatic synthesis of CMP-sialic acid and sialyl oligosaccharides
H. Kondo (1992)
10.1042/BST0351325
Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets.
L. Alderwick (2007)
10.1002/CHIN.199822150
Tin(IV) Chloride Mediated Glycosylation in Arabinofuranose, Galactofuranose and Rhamnopyranose.
A. K. Pathak (1998)
10.1021/ol401755e
β-Arabinofuranosylation using 5-O-(2-quinolinecarbonyl) substituted ethyl thioglycoside donors.
Qiangwei Liu (2013)
10.1021/JA0524043
Stereoselective C-glycosylation reactions of ribose derivatives: electronic effects of five-membered ring oxocarbenium ions.
Catharine H. Larsen (2005)
10.1016/j.carres.2012.05.021
Synthesis of branched arabinofuranose pentasaccharide fragment of mycobacterial arabinans as 2-azidoethyl glycoside.
K. G. Fedina (2012)
10.1021/OL0490680
Preparation, properties, and applications of n-pentenyl arabinofuranosyl donors.
Jun Lu (2004)
10.1016/J.TET.2009.11.038
Efficient one-pot syntheses of α-d-arabinofuranosyl tri- and tetrasaccharides present in cell wall polysaccharide of Mycobacterium tuberculosis
Xing-Yong Liang (2010)
10.1039/c4ob01395f
Efficient synthesis of oligosaccharyl 1,2-O-orthoesters from n-pentenyl glycosides and application to the pentaarabinofuranoside of the mycobacterial cell surface.
Shivaji A Thadke (2014)
10.1039/B000873G
1,2,5-ortho esters of D-arabinose as versatile arabinofuranosidic building blocks. Concise synthesis of the tetrasaccharidic cap of the lipoarabinomannan of Mycobacterium tuberculosis
T. Bamhaoud (2000)
10.1002/ANIE.200352539
Automated solid-phase synthesis of protected tumor-associated antigen and blood group determinant oligosaccharides.
Kerry Routenberg Love (2004)
10.1021/JO061440X
On the use of 3,5-O-benzylidene and 3,5-O-(di-tert-butylsilylene)-2-O-benzylarabinothiofuranosides and their sulfoxides as glycosyl donors for the synthesis of beta-arabinofuranosides: importance of the activation method.
D. Crich (2007)
10.1021/jo100575a
Probing the effect of acylation on arabinofuranose ring conformation in di- and trisaccharide fragments of mycobacterial arabinogalactan.
C. Liu (2010)
10.1093/glycob/cws078
Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells.
J. Torrelles (2012)
10.1002/CHIN.199146291
Stereoselective Synthesis of α‐Linked Saccharides by Use of Per O‐Benzylated 2‐Pyridyl 1‐Thio‐hexopyranosides as Glycosyl Donors and Methyl Iodide as an Activator.
H. B. Mereyala (1991)
10.3109/10409238.2014.925420
The cell envelope glycoconjugates of Mycobacterium tuberculosis
S. K. Angala (2014)
10.1021/OL048648U
Synthesis of the trisaccharide repeating unit of the atypical O-antigen polysaccharide from Danish Helicobacter pylori strains employing the 2'-carboxybenzyl glycoside.
Y. T. Kwon (2004)
10.1016/J.TETLET.2007.10.138
First synthesis of 4a-carba-β-d-galactofuranose
Jens Frigell (2007)
10.1002/CHIN.200348182
Some Key Experimental Features of a Modular Synthesis of Heparin‐Like Oligosaccharides.
J. D. Paz (2003)
10.1002/EJOC.201700712
Expedient Synthesis of a Linear Nonadecaarabinofuranoside of the Mycobacterium tuberculosis Cellular Envelope
Bijoyananda Mishra (2017)
10.1016/j.carres.2014.05.017
The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation.
Polina I. Abronina (2014)
10.1039/c3cc00042g
Automated solid phase synthesis of oligoarabinofuranosides.
Jeyakumar Kandasamy (2013)
10.1002/EJOC.200800249
NAP Ether Mediated Intramolecular Aglycon Delivery : A Unified Strategy for 1,2-cis-Glycosylation
A. Ishiwata (2008)
10.1021/JA00216A057
n-Pentenyl glycosides permit the chemospecific liberation of the anomeric center
D. R. Mootoo (1988)
10.1002/CHIN.199550194
A Convergent and Stereocontrolled Synthetic Route to the Core Pentasaccharide Structure of Asparagine‐Linked Glycoproteins.
Akihito Dan (1995)
10.1021/ol301666n
Automated solid-phase synthesis of hyaluronan oligosaccharides.
Marthe T C Walvoort (2012)
10.1021/JA0375176
Nucleophilic additions to fused bicyclic five-membered ring oxocarbenium ions: evidence for preferential attack on the inside face.
D. M. Smith (2003)
10.1016/S0008-6215(99)00078-6
Synthesis of methyl β-d-arabinofuranoside 5-[1d (and l)-myo-inositol 1-phosphate], the capping motif of the lipoarabinomannan of Mycobacteriumsmegmatis
J. Désiré (1999)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar