Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

A Review Of Thermally Controlled Covalent Bond Formation In Polymer Chemistry

L. P. Engle, K. Wagener
Published 1993 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract The purpose of this paper is to review known art in the area of thermally controlled covalent linkage formation for use in thermally reversible polymer systems. Only 1 :1 adduct forming reactions are considered in this paper; e.g., condensation reactions are not discussed because these reactions are controlled via the addition or elimination of small molecules. In the case of an exothermic process, covalent bonds would form at lower temperatures and disassemble at higher temperatures. Linkage formation could ideally be extended to either linear polymerizations or crosslinking schemes, as outlined in Fig. 1.
This paper references
10.1002/APP.1989.070380810
Ionene elastomers from polytetramethylene oxide diamines and reactive dihalides. I. Effect of dihalide structure on polymerization and thermal reversibility
C. Leir (1989)
10.1007/BF00956281
Cyclopentadienylation of allyl-chlorine enriched PVC and degradation thereof
B. Iván (1981)
10.1021/MA00212A007
Reversible gelation of polyoxazoline by means of diels-alder reaction
Y. Chujo (1990)
10.1007/BF00255718
Reversible crosslinking during thermal degradation of PVC
T. Kelen (1978)
10.1007/BF02063041
Cross-linking and gel formation in the thermal degradation of PVC
T. T. Nagy (1976)
10.1002/POL.1981.170190102
Cyclopentadienylation of PVC: Characterization and thermal and thermooxidative degradation studies
B. Iván (1981)
10.1080/00222338108063249
Degradation, Cyclopentadienylation, and Grafting of Vinyl Chloride/2-Chloropropene Copolymers
B. Iván (1981)
10.1002/POL.1983.170211013
Synthesis, characterization, and Diels–Alder extension of cyclopentadiene telechelic polyisobutylene. III. Silylcyclopentadiene‐telechelic polyisobutylene
J. Kennedy (1983)
10.1016/S0022-328X(00)88839-7
Spektroskopische untersuchungen an organometallischen verbindungen : XXXIII. 1H-NMR-spektren von σ-cyclopentadienylen von metallen der IV. Gruppe☆☆☆
H. Fritz (1965)
10.1002/POL.1979.170170715
Thermally reversible polymer systems by cyclopentadienylation. II. The synthesis of cyclopentadiene‐containing polymers
J. P. Kennedy (1979)
10.1080/00222338208056500
Preparation, Degradation, Cyclopentadienylation, and Grafting of PVC's Containing Relatively High Levels of Allylic Chlorines
B. Iván (1982)
10.1007/978-94-009-3425-2
Developments in Polymer Degradation—6
N. Grassie (1985)
10.1016/S0014-3057(69)80012-1
Degradation and stabilization of polymers
G. Scott (1969)
10.1007/BF00284412
Cyclopentadienylation of PVC
B. Iván (1979)
10.1002/POL.1980.170180604
Characterization of polychloroprenes and cationically modified polychloroprenes by thermal dehydrochlorination
B. Iván (1980)
10.1021/MA00006A001
Thermally reversible polymer linkages. 1. Model studies of the azlactone ring
K. Wagener (1991)
10.1007/BF00263204
Cyclopentadienylation of polychloroprene
B. Iván (1980)
10.1002/POL.1979.170170714
Thermally reversible polymer systems by cyclopentadienylation. I. A model for termination by cyclopentadienylation of olefin polymerization
J. P. Kennedy (1979)
10.1002/ANGE.19470590901
Das Di‐Isocyanat‐Polyadditionsverfahren (Polyurethane)
O. Bayer (1947)
10.1002/POLA.1988.080261106
Thermally reversible, covalently crosslinked polyphosphazenes
J. Salamone (1988)
10.1007/BF00275558
Crosslinking and scission in thermooxidative degradation of PVC
B. Iván (1980)
React. Kinet. Catal. Lett.
G. Pecchi (1974)
Textbook Of Polymer Science
F. Billmeyer (1971)
10.1021/MA00026A001
Thermally reversible polymer linkages. 3. Covalently crosslinked poly(azlactone)
K. Wagener (1991)



This paper is referenced by
THERMOPLASTIC ELASTOMERS WITH OLIGO (β-ALANINE) HARD SEGMENTS
K. Li (2014)
10.1002/POLA.22299
A Diels‐Alder/retro Diels‐Alder strategy to synthesize polymers bearing maleimide side chains
Tuğba Dışpınar (2007)
10.1002/1099-0518(20001215)38:24<4373::AID-POLA60>3.0.CO;2-5
Emulsion procedures for thermally reversible covalent crosslinking of polymers
X. Chen (2000)
10.1002/POLA.22524
Thermoreversible covalent crosslinking of maleated ethylene/propylene copolymers with diols
V. D. Mee (2008)
10.1021/IE400349B
Synthesis and Characterization of a New Thermoreversible Polyurethane Network
C. Varganici (2013)
10.1080/21680396.2018.1530155
Liquid crystal elastomers: an introduction and review of emerging technologies
Sabina W. Ula (2018)
10.1295/KORON.68.370
Development of Highly Functional Polylactic Acid Composites to Be Used in Electronic Instruments
M. Iji (2011)
10.3390/molecules13081773
Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials
Naozumi Teramoto (2008)
10.1002/ADFM.201703258
Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3‐Triazolium Cross‐Links
M. M. Obadia (2017)
10.1021/MA902596S
Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers.
Christopher J Kloxin (2010)
10.3390/ma11091608
Supramolecular Networks from Block Copolymers Based on Styrene and Isoprene Using Hydrogen Bonding Motifs—Part 1: Synthesis and Characterization
Elaine Rahmstorf (2018)
10.1021/jacs.5b02653
Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.
M. Obadia (2015)
12 Multifunctional Materials
S. Nemat-Nasser (2007)
10.1002/adma.202003761
Chelation Crosslinking of Biodegradable Elastomers.
Y. Chen (2020)
10.1039/c3cs60046g
Covalent adaptable networks: smart, reconfigurable and responsive network systems.
Christopher J Kloxin (2013)
10.1002/(SICI)1099-0518(19991201)37:23<4390::AID-POLA16>3.0.CO;2-5
Thermally reversible linking of halide‐containing polymers by potassium dicyclopentadienedicarboxylate
X. Chen (1999)
10.1016/J.PROGPOLYMSCI.2010.08.003
Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature
Guillaume Tillet (2011)
10.1016/J.PORGCOAT.2010.12.014
Tuneable adhesion through novel binder technologies
M. Wouters (2011)
10.3390/ma11091688
Supramolecular Networks from Block Copolymers Based on Styrene and Isoprene Using Hydrogen Bonding Motifs—Part 2: Dynamic Mechanical Analysis
Elaine Rahmstorf (2018)
10.1002/marc.201200599
3D Photofixation Lithography in Diels-Alder Networks.
Brian J. Adzima (2012)
10.1002/MACP.201300334
Reaction Kinetics and Thermodynamic Aspects of Thermoreversibly Cross‐Linked Polymer Networks
A. M. Peterson (2013)
10.3390/polym12040989
Achievement of Both Mechanical Properties and Intrinsic Self-Healing under Body Temperature in Polyurethane Elastomers: A Synthesis Strategy from Waterborne Polymers
Liangdong Zhang (2020)
10.1002/asia.202001157
Design Principles of Interfacial Dynamic Bonds in Self-Healing Materials: What are the Parameters?
A. S. Mohammad (2020)
10.1201/B11484-12
Pursuit of Long-Lasting Oxygen-Evolving Catalysts for Articial Photosynthesis: Self-Healing Materials and Molecular-Reinforced Structures
V. Amendola (2011)
10.1016/J.COMPSCITECH.2010.11.022
Thermoreversible and remendable glass–polymer interface for fiber-reinforced composites
A. M. Peterson (2011)
10.1002/pola.29524
Glass‐transition temperature governs the thermal decrosslinking behavior of Diels–Alder crosslinked polymethacrylate networks
Daniel J. Dobbins (2020)
10.1016/J.ACTAMAT.2007.06.019
Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer
T. Plaisted (2007)
10.3390/ma3010369
Synthesis and Properties of Trehalose-Based Flexible Polymers Prepared from Difurfurylidene Trehalose and Maleimide- Terminated Oligo(dimethylsiloxane) by Diels-Alder Reactions
Naozumi Teramoto (2010)
10.1016/S0032-3861(01)00270-1
A sol–gel reaction of vinyl polymers based on thermally reversible urea linkages
J. Chang (2001)
10.1002/POLA.28101
Controlled radical polymerization of anthracene-containing methacrylate copolymers for stimuli-responsive materials
M. Yokoe (2016)
10.1002/adma.200904138
Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating.
Brian J. Adzima (2010)
10.1016/j.ejpb.2015.06.007
The Diels-Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials.
Manuel Gregoritza (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar