Online citations, reference lists, and bibliographies.

Exploring The Unification Of Quantum Theory And General Relativity With A Bose–Einstein Condensate

Richard Howl, Roger Penrose, Ivette Fuentes
Published 2019 · Physics
Cite This
Download PDF
Analyze on Scholarcy
Share
Despite almost a century's worth of study, it is still unclear how general relativity (GR) and quantum theory (QT) should be unified into a consistent theory. The conventional approach is to retain the foundational principles of QT, such as the superposition principle, and modify GR. This is referred to as `quantizing gravity', resulting in a theory of `quantum gravity'. The opposite approach is `gravitizing QT' where we attempt to keep the principles of GR, such as the equivalence principle, and consider how this leads to modifications of QT. What we are most lacking in understanding which route to take, if either, is experimental guidance. Here we consider using a Bose-Einstein condensate (BEC) to search for clues. In particular, we study how a single BEC in a superposition of two locations could test a gravitizing QT proposal where wavefunction collapse emerges from a unified theory as an objective process, resolving the measurement problem of QT. Such a modification to QT due to general relativistic principles is testable near the Planck mass scale, which is much closer to experiments than the Planck length scale where quantum, general relativistic effects are traditionally anticipated in quantum gravity theories. Furthermore, experimental tests of this proposal should be simpler to perform than recently suggested experiments that would test the quantizing gravity approach in the Newtonian gravity limit by searching for entanglement between two massive systems that are both in a superposition of two locations.
This paper references
10.1016/S0375-9601(98)00583-0
Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length
Miki Wadati (1998)
10.1103/PhysRevA.59.4623
CREATING MACROSCOPIC QUANTUM SUPERPOSITIONS WITH BOSE-EINSTEIN CONDENSATES
Daniel Gordon (1999)
10.1103/RevModPhys.71.463
Theory of Bose-Einstein condensation in trapped gases
Franco Dalfovo (1999)
10.1063/1.2424439
Large atom number Bose-Einstein condensate of sodium.
K M R van der Stam (2007)
Environment-induced dynamics in a dilute Bose-Einstein condensate
Alexej Schelle (2009)
Diosi-Penrose criterion for solids in quantum superpositions and a single-photon detector
Garrelt Quandt-Wiese (2017)
10.1103/PhysRevLett.34.1472
Observation of gravitationally induced quantum interference
Roberto Colella (1975)
10.1103/PhysRevA.94.062125
Quantifying the mesoscopic quantum coherence of approximate NOON states and spin-squeezed two-mode Bose-Einstein condensates
Bogdan Opanchuk (2016)
10.1103/PhysRevA.97.063624
NOON state of Bose atoms in the double-well potential via an excited-state quantum phase transition
A. A. Bychek (2018)
Philosophical Transactions of the Royal Society of London. Series A: Mathematical
R. Penrose (1998)
10.1017/CBO9780511575150.012
Bose-Condensed Gases at Finite Temperatures: Numerical simulation of the ZNG equations
Allan Griffin (2009)
10.1103/PhysRevA.60.R29
Quantum-diffractive background gas collisions in atom-trap heating and loss
Samir Bali (1999)
10.1103/PhysRevLett.77.5320
Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis.
Pérez-García (1996)
10.1088/1367-2630/8/9/182
Creation of macroscopic superposition states from arrays of Bose–Einstein condensates
Jacob Dunningham (2006)
10.1103/PhysRevA.71.033617
Optically plugged quadrupole trap for Bose-Einstein condensates
Devang S. Naik (2005)
10.1103/PhysRevA.94.042119
Signifying the nonlocality of NOON states using Einstein-Podolsky-Rosen steering inequalities
Run Yan Teh (2016)
10.1103/PhysRevA.62.013607
Decoherence in Bose-Einstein condensates: Towards bigger and better Schrodinger cats
Diego A. R. Dalvit (2000)
10.1103/PhysRevD.98.046001
When can gravity path-entangle two spatially superposed masses?
Chiara Marletto (2018)
10.1017/CBO9780511575150
Bose-Condensed Gases at Finite Temperatures: Index
Allan Griffin (2009)
10.1364/OE.23.008014
Optical side-band cooling of a low frequency optomechanical system.
Hedwig J Eerkens (2015)
Magnetic Skatepark for Quantum Interference of a Superconducting Microsphere
Hernán Becerra Pino (2016)
10.1103/PhysRevA.68.023613
Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice
Augusto Smerzi (2003)
10.1098/rspa.1995.0139
Quantum spacetime fluctuations and primary state diffusion
Ian Percival (1995)
Quantum gravity 2 : a second Oxford symposium
Christopher Isham (1981)
10.1103/PhysRevLett.91.130401
Towards quantum superpositions of a mirror.
William K. Marshall (2003)
10.1007/BF02105068
On Gravity's role in Quantum State Reduction
Roger Penrose (1996)
10.1088/0953-4075/37/18/009
Tunnelling induced collapse of an atomic Bose–Einstein condensate in a double-well potential
Eleni Sakellari (2004)
10.1023/B:JOLT.0000024552.87247.eb
The Schrödinger Cat Family in Attractive Bose Gases
T. Ho (2000)
10.1088/0305-4470/21/22/026
The potential for a homogeneous spheroid in a spheroidal coordinate system. II. At an interior point
W. X. Wang (1988)
10.1063/1.4939828
Nested trampoline resonators for optomechanics
Matthew John Weaver (2016)
10.1103/PhysRevA.42.5086
Relativistic theory for continuous measurement of quantum fields.
Diósi (1990)
10.1088/1751-8113/40/4/011
Comments on proposed gravitational modifications of schrödinger dynamics and their experimental implications
Stephen L. Adler (2007)
10.1038/nature16155
Quantum superposition at the half-metre scale
Timothy Light Kovachy (2015)
10.1103/PhysRevA.57.R3180
STRUCTURE AND STABILITY OF BOSONIC CLOUDS : ALKALI-METAL ATOMS WITH NEGATIVE SCATTERING LENGTH
Alberto Parola (1998)
10.1103/PhysRevA.82.063605
Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission
Harald Pichler (2010)
10.5860/choice.43-0377
The Road to Reality : A Complete Guide to the Laws of the Universe
Brian Blank (2006)
10.1007/BF02302261
Relational quantum mechanics
Carlo Rovelli (1996)
10.1007/3-540-40894-0_8
Schrödinger Cat State of a Bose—Einstein Condensate in a Double-Well Potential
Janne Ruostekoski (2001)
10.1016/0375-9601(87)90681-5
A universal master equation for the gravitational violation of quantum mechanics
Lajos Diósi (1987)
Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement
Helmut Rauch (2000)
10.1007/BF02731494
Structure of a quantized vortex in boson systems
Eugene P. Gross (1961)
10.1016/j.optcom.2010.04.067
Demonstrating mesoscopic superpositions in double-well Bose-Einstein condensates
Tania J. Haigh (2010)
10.1103/PhysRevA.51.4704
Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms.
Ruprecht (1995)
10.1103/PhysRevA.58.536
QUANTUM KINETIC THEORY. III. QUANTUM KINETIC MASTER EQUATION FOR STRONGLY CONDENSED TRAPPED SYSTEMS
Crispin W. Gardiner (1998)
10.1103/PhysRevLett.81.3108
Cold Bosonic Atoms in Optical Lattices
D. Jaksch (1998)
10.1103/PhysRevLett.111.180403
Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin.
M. Scala (2013)
10.1088/1464-4266/5/2/368
Bose–Einstein condensation in a magnetic double-well potential
Tobias Gerard Tiecke (2003)
Philosophical transactions of the Royal Society of London. B
HighWire Press
10.1103/PhysRev.129.959
QUANTUM CELL MODEL FOR BOSONS
Harold Arthur Gersch (1963)
10.1002/andp.19874990703
In Favor of a Newtonian Quantum Gravity
Lajos Diósi (1987)
10.1017/S0305004100011683
The calculation of atomic fields
Luke Hartley Thomas (1927)
10.1103/PhysRevA.83.052703
Resonant three-body physics in two spatial dimensions
Kerstin Helfrich (2011)
10.1103/PhysRevLett.92.140401
Inhibiting three-body recombination in atomic Bose-Einstein condensates.
Chris P. Search (2004)
10.11588/heidok.00006133
Bose-Einstein condensates in magnetic double well potentials
T. Schumm (2005)
10.1103/RevModPhys.29.454
Relative state formulation of quantum mechanics
Hugh Everett (1957)
10.1126/science.1088827
Cooling Bose-Einstein Condensates Below 500 Picokelvin
Aaron E. Leanhardt (2003)
10.1088/0264-9381/11/6A/016
Gravitational, rotational and topological quantum phase shifts in neutron interferometry
S. A. Werner (1994)
10.1093/ACPROF:OSO/9780198758884.001.0001
Bose-Einstein condensation and superfluidity
Lev Petrovich Pitaevskiĭ (2016)
10.1103/PHYSREVA.73.023606
Creation, detection, and decoherence of macroscopic quantum superposition states in double-well Bose-Einstein condensates
Yu-Ping Huang (2006)
10.1088/1361-6382/aaf9ca
Tabletop experiments for quantum gravity: a user’s manual
Daniel Carney (2019)
10.1007/S10701-013-9770-0
On the Gravitization of Quantum Mechanics 1: Quantum State Reduction
Roger Penrose (2014)
10.1103/PhysRevA.42.78
Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles.
Ghirardi (1990)
10.1103/PhysRevD.7.2850
Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time
Stephen A. Fulling (1973)
10.1103/PhysRevLett.81.3811
BOSE-EINSTEIN CONDENSATION OF ATOMIC HYDROGEN
Dale. G. Fried (1998)
10.1103/PhysRevA.95.032134
Collapse in ultracold Bose Josephson junctions
Marco Bilardello (2017)
10.1016/j.aop.2010.10.006
Decoherence effects in Bose–Einstein condensate interferometry I. General theory
Bryan J. Dalton (2011)
10.1103/PhysRevA.57.1208
Quantum superposition states of Bose-Einstein condensates
J. Ignacio Cirac (1998)
10.1142/S0218271814300250
Generalized Uncertainty Principle: Approaches and Applications
Abdel Nasser Tawfik (2014)
10.1098/rsta.1998.0256
Quantum computation, entanglement and state reduction
Roger Penrose (1998)
10.1007/BF02395929
Variational study of dilute Bose condensate in a harmonic trap
Alexander L. Fetter (1997)
10.1103/PhysRevA.76.022711
Three-Body Recombination in One Dimension
Nandita P Mehta (2007)
10.1103/PhysRevA.84.043628
Effect of phase noise on useful quantum correlations in Bose Josephson junctions
Giulia Ferrini (2011)
10.1088/1742-6596/174/1/012001
Black holes, quantum theory and cosmology
Roger Penrose (2009)
10.1103/PhysRev.135.B849
Possible Connection Between Gravitation and Fundamental Length
Carver A. Mead (1964)
10.1103/PhysRevB.40.546
Boson localization and the superfluid-insulator transition.
Fisher (1989)
10.1103/PhysRevA.58.1450
Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein condensate at finite temperature including trap loss
D. Jaksch (1998)
10.1016/j.physletb.2019.03.015
On the possibility of laboratory evidence for quantum superposition of geometries
Marios Christodoulou (2019)
10.1088/0305-4470/8/4/022
Scalar production in Schwarzschild and Rindler metrics
P. R. Davies (1975)
10.1103/PhysRevA.67.013607
Many-particle entanglement in two-component Bose-Einstein condensates
Andrea Micheli (2003)
10.1103/PhysRevLett.119.240402
Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity.
Chiara Marletto (2017)
A clock containing a massive object in a superposition of states; what makes Penrosian wavefunction collapse tick?
Tjerk H Oosterkamp (2013)
10.1103/PhysRevLett.119.240401
Spin Entanglement Witness for Quantum Gravity.
Sougato Bose (2017)
10.1088/2058-9565/aa9d15
On-chip quantum interference of a superconducting microsphere
Hernán Becerra Pino (2018)
10.1103/PhysRevLett.81.3807
Cold collision frequency shift of the 1S-2S transition in hydrogen
Thomas C. Killian (1998)
10.1142/9781848160224_0013
WAVEFUNCTION COLLAPSE AS A REAL GRAVITATIONAL EFFECT
Roger Penrose (2000)
10.1103/PhysRevD.14.870
Notes on black-hole evaporation
W. G. Unruh (1976)
10.1007/3-540-40894-0
Directions in Quantum Optics
D. Walls (2001)
10.1103/PhysRevA.81.013620
Background atoms and decoherence in optical lattices
Krzysztof Pawłowski (2010)
10.1007/BF02717926
Gravitation and quantum mechanics of macroscopic objects
F. Károlyházy (1966)
10.1098/rspa.1965.0058
Zero rest-mass fields including gravitation: asymptotic behaviour
Roger Penrose (1965)
10.1103/PhysRevLett.110.200406
Bose-Einstein condensation of atoms in a uniform potential.
Alexander L. Gaunt (2013)
10.1103/RevModPhys.51.43
Coherence effects in neutron diffraction and gravity experiments
Daniel Mordecai Greenberger (1979)
10.1016/0370-2693(86)91579-0
The non-relativistic cow experiment in the uniformly accelerated reference frame
Horst Dr Ing Beyer (1986)
10.1103/PhysRevA.42.1057
Continuous-spontaneous-reduction model involving gravity.
Ghirardi (1989)
Searching for Signatures of Quantum Gravity in Quantum Gases
Simon A. Haine (2018)
10.1103/PhysRevA.55.2930
Bose-Einstein condensation in an atomic gas with attractive interactions
Hualin Shi (1997)
10.1007/BF02181289
Macroscopic quantum tunneling of a bose condensate
H. T. C. Stoof (1996)
10.1103/PhysRev.73.360
The Influence of Retardation on the London-van der Waals Forces
H.B.G. Casimir (1948)
10.1088/0264-9381/15/9/019
Spherically-symmetric solutions of the Schrödinger-Newton equations
Irene M. Moroz (1998)
10.1103/PhysRevLett.89.140402
Decoherence due to three-body loss and its effect on the state of a Bose-Einstein condensate.
Michael Wong Jack (2002)
10.3389/fphy.2020.00207
On the Possibility of Experimental Detection of the Discreteness of Time
Marios Christodoulou (2020)
10.1103/PhysRevA.82.033621
Noise in Bose Josephson junctions: Decoherence and phase relaxation
Gabriele Ferrini (2010)
10.1103/PhysRevLett.77.2921
Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level.
Fedichev (1996)
10.1103/PhysRevA.40.1165
Models for universal reduction of macroscopic quantum fluctuations.
Diósi (1988)
Classical and quantum inertia : a heuristic introduction
Haret C. Rosu (1994)
10.1103/PhysRevA.64.053613
Macroscopic quantum superposition states in Bose-Einstein condensates: Decoherence and many modes
Pearl J. Y. Louis (2001)
10.1103/PhysRevA.57.511
MACROSCOPIC SUPERPOSITIONS OF BOSE-EINSTEIN CONDENSATES
Janne Ruostekoski (1998)
10.1103/PHYSREVA.91.062710
Ultracold Three-body Recombination in Two Dimensions
Jos'e P. D'Incao (2014)
10.1103/PhysRevA.82.022120
Quantum Zeno suppression of three-body losses in Bose-Einstein condensates
Ralf Schutzhold (2010)



This paper is referenced by
Modified general relativity and quantum theory in curved spacetime
Gary B. Nash (2019)
10.1016/j.physletb.2019.03.015
On the possibility of laboratory evidence for quantum superposition of geometries
Marios Christodoulou (2019)
Quantum metrology with optomechanical systems in the nonlinear regime.
Sofia Qvarfort (2020)
10.1016/j.physd.2019.132301
From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems
Angel Pinos Paredes (2020)
Modular polymer representations of the Weyl algebra
Yĭgit Yargiç (2020)
10.1103/PhysRevA.101.052110
Locality & Entanglement in Table-Top Testing of the Quantum Nature of Linearized Gravity.
Ryan J. Marshman (2019)
10.1103/PhysRevA.101.033834
Optimal estimation with quantum optomechanical systems in the nonlinear regime
Fabienne Schneiter (2020)
10.22541/au.155853185.50484892
Relativization , making quantum field theory compatible with general relativity then testing the resulting models
Hontas Freeman Farmer (2019)
10.1103/PhysRevA.101.043617
Detecting a logarithmic nonlinearity in the Schr\"odinger equation using Bose-Einstein condensates
Sascha Vowe (2020)
10.3389/fphy.2020.00176
On the Testability of the Equivalence Principle as a Gauge Principle Detecting the Gravitational t3 Phase
Chiara Marletto (2020)
10.1016/j.physleta.2019.05.043
Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions.
Marek Czachor (2019)
Accelerated observers emerging from a Bose-Einstein condensate through analogue gravity
Beatriz González-Fernández (2019)
10.1364/OL.44.002224
Giant Unruh effect in hyperbolic metamaterial waveguides.
Igor I. Smolyaninov (2019)
Semantic Scholar Logo Some data provided by SemanticScholar