Online citations, reference lists, and bibliographies.

An Overview Of Complex Fractal Dimensions: From Fractal Strings To Fractal Drums, And Back

Michel L. Lapidus
Published 2018 · Physics, Mathematics
Cite This
Download PDF
Analyze on Scholarcy
Share
Our main goal in this long survey article is to provide an overview of the theory of complex fractal dimensions and of the associated geometric or fractal zeta functions, first in the case of fractal strings (one-dimensional drums with fractal boundary), in \S\ref{Sec:2}, and then in the higher-dimensional case of relative fractal drums and, in particular, of arbitrary bounded subsets of Euclidean space of $\mathbb{R}^N$, for any integer $N \geq 1$, in \S\ref{Sec:3}. Special attention is paid to discussing a variety of examples illustrating the general theory rather than to providing complete statements of the results and their proofs, for which we refer to the books \cite{Lap-vF4} (2013, joint with M. van Frankenhuijsen) when $N=1$, and \cite{LapRaZu1} (2017, joint with G. Radunovi\' c and D. \v{Z}ubrini\'c) when $N \geq 1$ is arbitrary. Finally, in an epilogue (\S\ref{Sec:4}), entitled "From quantized number theory to fractal cohomology", we briefly survey aspects of related work (motivated in part by the theory of complex fractal dimensions) of the author with H. Herichi (in the real case) \cite{HerLap1}, along with \cite{Lap8}, and with T. Cobler (in the complex case) \cite{CobLap1}, respectively, as well as in the latter part of a book in preparation by the author, \cite{Lap10}.
This paper references
Three-Term Asymptotics of the Spectrum of Self-Similar Fractal Drums
Jurgen Gerling (1999)
10.1090/gsm/160
A Course in Analytic Number Theory
Marius Overholt (2014)
10.5802/aif.1570
Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres
Driss Essouabri (1997)
10.1112/S0024609398004469
A Comparison Estimate for the Heat Equation with an Application to the Heat Content of the S‐Adic Von Koch Snowflake
Michiel van den Berg (1998)
10.1038/160139a0
Methods of Mathematical Physics
Dr. M. G. Worster (1947)
10.1016/J.AIM.2012.04.023
Fractal curvature measures and Minkowski content for self-conformal subsets of the real line
Marc Kesseböhmer (2012)
10.1007/S11005-009-0302-Y
Fractal Strings and Multifractal Zeta Functions
Michel L. Lapidus (2006)
10.1016/J.AIM.2012.09.011
Zeta functions of discrete self-similar sets
Driss Essouabri (2013)
10.2307/2371513
On the Volume of Tubes
Hermann Weyl (1939)
10.1007/BF00249784
On a spectral analysis for the Sierpinski gasket
Masatoshi Fukushima (1992)
10.1002/cpa.3160140316
Rotation and strain
F Kennison John (1961)
10.1002/9781118033098.ch17
Real and Complex Analysis
Roger Cooke (2011)
10.1007/978-3-642-56579-3_2
Complex Powers of Elliptic Operators
Mikhail Shubin (2001)
10.1070/IM1972v006n01ABEH001866
SUR LES FORMULES EXPLICITES DE LA THÉORIE DES NOMBRES
Andre A. Weil (1972)
TUBE FORMULAS FOR GRAPH-DIRECTED FRACTALS
A. Ersin (2010)
10.14321/realanalexch.31.2.0315
Analysis of Minkowski contents of fractal sets and applications.
Darko Zubrinic (2006)
10.1088/1751-8113/45/37/374005
Riemann zeros and phase transitions via the spectral operator on fractal strings
Hafedh Herichi (2012)
10.1007/BF01181074
Quadratische Körper im Gebiete der höheren Kongruenzen. I.
E. L. M Artin (1924)
Old and new conjectures and results about a class of Dirichlet series
Atle Selberg (1991)
10.1512/iumj.2005.54.2490
Spectral Analysis of a Self-Similar Sturm-Liouville Operator
Christophe Sabot (2004)
Semigroups of Linear Operators and Applications
Jerome A. Goldstein (1985)
10.1007/978-94-017-2091-5
Limit Theorems for the Riemann Zeta-Function
Antanas Laurincikas (1995)
10.1007/BF02421317
Sur une classe d’équations fonctionnelles
Ivar Fredholm
10.1016/b978-0-12-506851-2.x5000-6
Geometric Measure Theory
Toby C. O’Neil (2002)
ON THERMODYNAMIC FORMALISM
Danny Calegari (2014)
THE COHOMOLOGY THEORY OF ABSTRACT ALGEBRAIC VARIETIES
By ALEXANDER GROTHENDIEGK (2010)
10.1090/pspum/036/573438
Weyl''s conjecture for manifolds with concave boundary
Richard B. Melrose (1980)
Tauberian Theory: A Century of Developments
J. Korevaar (2010)
10.1216/RMJ-2012-42-4-1327
Geometry of canonical self-similar tilings
Erin P. J. Pearse (2008)
10.1007/978-94-009-0491-0_5
Analytic functions of several complex variables
Nikolai N. Bogolubov (1965)
Springer
Ch. Pommerenke (1992)
10.1112/blms/21.1.100
AN INTRODUCTION TO THE THEORY OF THE RIEMANN ZETA‐FUNCTION
Richard Roxby Hall (1989)
Minkowski content and singular integrals, Chaos
D. Žubrinić (2003)
227 (2011)
M. L. Lapidus (2011)
10.1007/s10711-011-9661-5
Minkowski content and local Minkowski content for a class of self-conformal sets
Uta R. Freiberg (2012)
10.1112/plms/s3-66.1.41
The Riemann Zeta‐Function and the One‐Dimensional Weyl‐Berry Conjecture for Fractal Drums
Michel L. Lapidus (1993)
10.1007/BF01589495
Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory
J. B. Bost (1995)
Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, in: Contemporary Mathematics (A
A. Atzmon (2006)
Maz’ja
V. G (1985)
Mathematical Communications 21 (2016)
G. Radunović (2016)
10.1007/978-0-387-70914-7
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Haim Brezis (2010)
10.1007/978-1-4684-9884-4
A Course in Arithmetic
Jean-Pierre Serre (1973)
10.1090/S0002-9939-2012-11408-X
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates
Gabriel Acosta (2012)
Pollicott, An analogue of the prime number theorem and closed orbits of Axiom A flows
M. W. Parry (1983)
Lidskii, Non-Selfadjoint operators with a trace
V B. (1959)
10.1090/pspum/055.1/1265547
Motivic L-functions and regularized determinants
Christopher Deninger (1994)
10.1016/S0076-5392(08)63379-2
Spectral and Fractal Geometry: From the Weyl-Berry Conjecture for the Vibrations of Fractal Drums to the Riemann Zeta-Function
Michel L. Lapidus (1992)
10.1016/b978-0-12-585001-8.x5001-6
Methods Of Modern Mathematical Physics
Kristian Kirsch (2016)
1995
S. Mac Lane (1963)
Parts I–III
N. Dunford (1988)
10.1038/241222a0
Algebraic Geometry
T. J. Willmore (1973)
Quantum fields and strings : a course for mathematicians
Pierre Deligné (1999)
10.1016/B978-0-12-384931-1.00018-0
R
J. M. Lackie (2013)
10.1007/S10440-010-9562-X
Tube Formulas and Complex Dimensions of Self-Similar Tilings
Michel L. Lapidus (2006)
10.1016/J.AIM.2007.06.009
Dirac operators and spectral triples for some fractal sets built on curves
Erik Christensen (2006)
10.1007/s002200000326
Self-Similarity of Volume Measures for Laplacians¶on P. C. F. Self-Similar Fractals
Jun Kigami (2001)
10.1215/S0012-7094-41-00805-0
The Fredholm theory of integral equations
Frank Smithies (1941)
10.1016/0378-4371(92)90578-E
Self-similar drums and generalized Weierstrass functions
Jurgen Gerling (1992)
10.1090/conm/600
Minkowski Measurability Results for Self-Similar Tilings and Fractals with Monophase Generators
Michel L. Lapidus (2013)
10.1007/3-540-17171-1_1
Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics (
M. Victoria Berry (1986)
10.1090/S0002-9947-1993-1176086-7
An example of a two-term asymptotics for the “counting function” of a fractal drum
Jacqueline Fleckinger-Pellé (1993)
A generalization of Ikehara’s
H. R. Pitt (1939)
10.1090/S0002-9947-99-02539-8
Lacunarity of self-similar and stochastically self-similar sets
Dimitrios Gatzouras (2000)
10.1090/S0002-9947-07-04150-5
Spectral zeta functions of fractals and the complex dynamics of polynomials
Alexander Teplyaev (2005)
10.1090/conm/601/11959
The Decimation Method for Laplacians on Fractals: Spectra and Complex Dynamics
Nishu Lal (2013)
10.1090/pspum/028.1/9907
An overview of Deligne''s proof of the Riemann hypothesis for varieties over finite fields
Nicholas M. Katz (1976)
10.1097/ccm.0000000000002891
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ?
Kathleen N. Dollman (2009)
10.1007/BF03167295
On eigenvalue problems for Laplacians on P.C.F. self-similar sets
Tadashi Shima (1996)
10.1007/978-3-642-67363-4_7
Distribution of Modes in Fractal Resonators
Michael V. Berry (1979)
10.1007/BF01231885
LocalL-factors of motives and regularized determinants
Christopher Deninger (1992)
10.1007/BF01231521
Riesz potentials and explicit sums in arithmetic
Shai Haran (1990)
10.1007/978-1-4612-0497-8_1
The Bergman Spaces
Haakan Per Jan Hedenmalm (2000)
10.1038/134514a0
Collected Papers
G. H. L. (1934)
10.1007/s000290050042
Trace formula in noncommutative geometry and the zeros of the Riemann zeta function
Alain Connes (1998)
10.1007/BF02940685
Abstrakte begründung der komplexen multiplikation und riemannsche vermutung in funktionenkörpern
Helmut Hasse (1934)
10.4099/math1924.31.157
Zeta functions associated to Pascal's triangle mod p
Driss Essouabri (2005)
3
S. Koçak (2010)
Rotation and strain, Commun
F. John (1961)
10.1007/S11785-012-0248-4
Privileged Regions in Critical Strips of Non-lattice Dirichlet Polynomials
Gaspar Mora (2013)
10.1007/BF02392869
Quasiconformal mappings and extendability of functions in sobolev spaces
Peter W. Jones (1981)
10.1090/gsm/154
A Course in Complex Analysis and Riemann Surfaces
Wilhelm Schlag (2014)
10.1090/memo/0608
Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann-Zeta-Function
Christina Q. He (1997)
Differential Equations on Fractals: A Tutorial
Robert S. Strichartz (2006)
Measure density and extendability of functions, Rev
P. Hajlasz (2008)
A: Math
N. Lal (2012)
307 (2017)
M. L. Lapidus (2015)
10.1007/978-3-0348-7891-3_16
Spectral Zeta Function of Symmetric Fractals
Alexander Teplyaev (2004)
10.1007/978-3-540-77270-5_4
On the Riemann Hypothesis for function fields
Anton Deitmar (2006)
10.1090/memo/1166
New Foundations for Geometry-two Non-additive Languages for Arithmetical Geometry
Murali Haran (2017)
Lacunarity, Minkowski content, and self-similar sets in R, in: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot (M
M. Frantz (2004)
10.2307/2372656
Remarks on Periodic Sequences and the Riemann Zeta-Function
Calvin Richard Putnam (1954)
10.1017/S0305004100074053
Counterexamples to the modified Weyl-Berry conjecture on fractal drums
Michel L. Lapidus (1996)
A motivated introduction to the Langlands program
M. Ram Murty (1993)
Can one hear the shape of a drum
Claudio Perez Tamargo (2008)
10.1201/9781315180700-6
Measure Theory
John E. Hutchinson (2007)
Towards a noncommutative fractal geometry? Laplacians and volume measures on fractals, in: Harmonic Analysis and Nonlinear Differential Equations (A Volume in Honor of Victor L
M. L. Lapidus (1997)
10.1163/2352-0248_edn_a0147200
Analysis situs
Robert J.M. Wilson (1985)
10.1137/S0036144598347497
The Riemann Zeros and Eigenvalue Asymptotics
Michael V. Berry (1999)
Théorie des distributions
Laurent Schwartz (1957)
10.1007/BF02392732
Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits
Steven P. Lalley (1989)
10.1112/plms/s1-32.1.277
Second Complément à l'Analysis Situs
Henri Poincaré (1900)
10.1051/jphys:01984004502019100
Spectrum of harmonic excitations on fractals
Rabih Rammal (1984)
10.1090/S0002-9947-05-03646-9
Random fractal strings: their zeta functions, complex dimensions and spectral asymptotics
Ben M. Hambly (2005)
10.1007/BF02391913
The spectral function of an elliptic operator
Lars Hörmander (1968)
10.1007/978-3-319-22240-0_14
The Sound of Fractal Strings and the Riemann Hypothesis
Michel L. Lapidus (2015)
10.1090/pspum/072.1/2112111
Fractality, Self-Similarity and Complex Dimensions
Michel L. Lapidus (2004)
Frankenhuijsen, Arithmetic progressions of zeros of the Riemann zeta function
M. van (2005)
1976
D.J.A. Welsh (2010)
Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals, in: Geometry of the Laplace Operator
M. V. Berry (1980)
Selberg’s conjectures and Artin’s L-functions
M. Ram Murty (1994)
Generalized zeta-functions for Axiom A basic sets
D. Ruelle (1976)
10.1016/j.chaos.2013.10.001
Invariance of the normalized Minkowski content with respect to the ambient space
Maja Resman (2013)
10.1093/IMRN/RNT197
The Riemann-zeta function on vertical arithmetic progressions
Xiannan Li (2012)
Part 1: Analysis, Number Theory, and Dynamical Systems
Soc (2004)
10.4171/JFG/57
Fractal Tube Formulas for Compact Sets and Relative Fractal Drums: Oscillations, Complex Dimensions and Fractality
Michel L. Lapidus (2016)
10.1007/978-3-319-18660-3_13
Fractal Zeta Functions and Complex Dimensions: A General Higher-Dimensional Theory
Michel L. Lapidus (2015)
10.1515/9783111684987-006
. 6 / . ? / . @ /
Thomas Wassmer (2005)
Analytic Number Theory: In Honor of Helmut Maier's 60th Birthday
Carl Pomerance (2015)
Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions
Michel L. Lapidus (2017)
Riemann's Zeta Function
Adam Harper (2014)
Almost Periodic Functions
A S Besioovitoh
10.1088/1751-8113/45/36/365205
Spectral Zeta Functions of Laplacians on Self-Similar Fractals
Nishu Lal (2012)
10.1090/mbk/051
In Search of the Riemann Zeros
Michel L. Lapidus (2008)
10.1112/jlms/52.1.15
The Riemann Hypothesis and Inverse Spectral Problems for Fractal Strings
Michel L. Lapidus (1995)
10.2307/2532125
Fractal geometry - mathematical foundations and applications
Kenneth Falconer (1990)
10.1093/acprof:oso/9780198702498.001.0001
Feynman's Operational Calculus and Beyond: Noncommutativity and Time-Ordering
Gerald W. Johnson (2015)
10.1007/BF01210795
Can one hear the dimension of a fractal?
Jean Pierre Brossard (1986)
10.1090/S0002-9904-1949-09219-4
Numbers of solutions of equations in finite fields
Andre A. Weil (1949)
10.1142/S0218348X95000643
FRACTALS AND VIBRATIONS: CAN YOU HEAR THE SHAPE OF A FRACTAL DRUM?
Michel L. Lapidus (1995)
10.1051/jphyslet:0198300440101300
Random walks on fractal structures and percolation clusters
Rabih Rammal (1983)
10.2307/3616894
Transcendental Number Theory
Alan L. Baker (1975)
10.1090/conm/197
Matroid theory
James G. Oxley (1992)
10.12775/TMNA.1994.025
Analysis on fractals, Laplacians on self-similar sets, noncommutative geometry and spectral dimensions
Michael L. Lapidus (1994)
An Invitation to Fractal Geometry : Dimension Theory
M. L. Lapidus (2018)
Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung
H. Weyl (1912)
Solitons & Fractals 57 (2013)
M. Resman (2012)
The p-adic Numbers
Akhil Mathew (2009)
Quantized Riemann zeta function: Its operator-valued Dirichlet series
H. Herichi (2017)
10.1070/IM1975v009n03ABEH001485
Theorem on the "universality" of the Riemann zeta-function
S. M. Voronin (1975)
10.1007/S11512-008-0087-8
General Hausdorff functions, and the notion of one-sided measure and dimension
Claude Tricot (2010)
10.4135/9781483365817.n608
Functional Analysis
Hyunjoong Kim (2017)
10.1063/1.1404851
The Feynman Integral and Feynman's Operational Calculus
Gerald W. Johnson (2000)
submitted for publication in the Proceedings of the 6th Cornell Conference on Analysis
M. L. Lapidus (2018)
Fractal membranes as the second quantization of fractal strings
M. L. Lapidus (2018)
multifractal spectra
K. E. Ellis (2012)
The Theory of the Riemann Zeta-Function
Edward Charles Titchmarsh
10.3113/jsoa.2018.0125
– 2018
третьему Совещанию (2017)
Selberg’s conjectures and Artin L-functions, II, in: Current Trends in Mathematics and Physics (S. D
M. Ram Murty (1995)
3
S. Kombrink (2015)
10.1090/conm/600/11949
Minkowski Measurability and Exact Fractal Tube Formulas for p-Adic Self-Similar Strings
Michel L. Lapidus (2012)
10.2307/2323761
Fractal Geometry of Nature
Benoit B. Mandelbrot (1977)
10.1112/S0024609399316155
INTRODUCTION TO GEOMETRIC PROBABILITY
Peter McMullen (1999)
10.1112/S0024610706022988
A TUBE FORMULA FOR THE KOCH SNOWFLAKE CURVE, WITH APPLICATIONS TO COMPLEX DIMENSIONS
Michel L. Lapidus (2004)
10.1038/164977a0
Quantum Theory of Fields
Leopold Infeld (1949)
10.1007/978-3-642-61497-2
The Analysis of Linear Partial Differential Operators I
Lars Hörmander (1983)
Weighted Korn inequality on John domains
Fernando L'opez Garc'ia (2016)
10.1017/S0305004100022684
Additive functions of intervals and Hausdorff measure
Patricia A. Moran (1946)
10.1112/jlms/s1-29.4.449
On the Complementary Intervals of a Linear Closed Set of Zero Lebesgue Measure
A. S. Besicovitch (1954)
The mysteries of the real prime
Shai M. J. Haran (2001)
10.1090/S0002-9939-1995-1224615-4
On the Minkowski measurability of fractals
K. J. Falconer (1995)
Sur les courbes algébriques et les variétés qui s'en déduisent
Andre A. Weil (1948)
k-point configurations of discrete self-similar sets, in: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I :Fractals in Pure Mathematics (D
D. Essouabri (2013)
Goh’berg and M
I. C (1969)
10.1016/j.arcped.2012.01.013
[Et al].
Pierre Cochat (2012)
The Statistical Behaviour and Universality Properties of the Riemann ZetaFunction and Other Allied Dirichlet Series
B. Bagchi (1981)
Fonction zêta et distributions, Séminaire Bourbaki, 18ième année
A. Weil (1965)
10.3390/fractalfract2040026
Minkowski Dimension and Explicit Tube Formulas for p-Adic Fractal Strings
Michel L. Lapidus (2018)
10.1007/S00209-016-1633-X
Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable
Sabrina Kombrink (2015)
10.1515/ADVGEOM-2012-0026
Fractal curvature measures of self-similar sets
Steffen Winter (2010)
10.1016/J.JFA.2015.04.016
Global regularity for a class of quasi-linear local and nonlocal elliptic equations on extension domains
Alejandro Vélez-Santiago (2015)
Fractal Zeta Functions: To Ahlfors Spaces and Beyond
S. P. Watson (2017)
10.1007/BF01298324
On L-functions
Raymond George Ayoub (1967)
10.2307/2372402
On the Non-Periodicity of the Zeros of the Riemann Zeta-Function
Calvin Richard Putnam (1954)
Standard conjectures on algebraic cycles, in: Algebraic Geometry (Internat
A. Grothendieck (1969)
Ivrii
V. Ja (1998)
Multifractal tubes, in:Further Developments in Fractals and Related Fields, Trends in Mathematics, Birkhäuser/Springer
L. Olsen (2013)
10.1103/RevModPhys.55.583
The renormalization group and critical phenomena
Kenneth G. Wilson (1983)
10.1090/mmono/018
Introduction to the theory of linear nonselfadjoint operators
Israel Gohberg (1969)
10.1007/BF02393212
Remarques diverses sur l'équation de Fredholm
Henri Poincaré
10.1142/9789814366076_0012
Partition zeta functions, multifractal spectra, and tapestries of complex dimensions
Kate Ellis (2010)
10.1090/S0002-9947-2010-05198-0
Lipschitz-Killing curvatures of self-similar random fractals
Martina Zähle (2010)
10.3934/dcdss.2019007
Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces
Michel L. Lapidus (2019)
10.5186/AASFM.2010.3506
A decomposition technique for John domains
Lars Diening (2010)
10.2307/2374196
AN ESTIMATE NEAR THE BOUNDARY FOR THE SPECTRAL FUNCTION OF THE LAPLACE OPERATOR
Robert Seeley (1980)
Fractal analysis of unbounded sets in Euclidean spaces and Lapidus zeta functions
Goran Radunović (2015)
10.1515/crll.1996.471.77
John domains, quasidisks, and the Nehari class.
B. C. Osgood (1996)
Untersuchungen zur Theorie von Weyl–Berry–Lapidus
J. Gerling (1992)
Lapidus,Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl–Berry conjecture, in: Ordinary and Partial Differential Equations (B
M L. (1992)
Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mém
C.-J. de la Vallée Poussin (1900)
Hermann Weyl : Gesammelte Abhandlungen (Collected Works)
H. Weyl (1968)
Tauberian theory and its applications
A. G. Postnikov (1980)
10.1016/S0001-8708(77)80044-3
Notes on infinite determinants of Hilbert space operators
Barry Simon (1977)
10.1098/rsta.2014.0240
Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis
Michel L. Lapidus (2015)
10.1515/crll.1993.441.1
Lefschetz trace formulas and explicit formulas in analytic number theory.
Christopher Deninger (1993)
10.1007/BF02838327
Removable singularities of solutions of linear partial differential equations
Reese Harvey (1970)
Üreyen, Tube volumes via functional equations
DenKoÖÜ A. Deniz (2014)
10.1112/plms/s3-72.1.188
Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals
Michael Levitin (1996)
10.1002/sapm1938171247
A Generalization of Ikehara's Theorem
Norbert Wiener (1938)
10.1214/aop/1024404506
Brownian motion on a random recursive Sierpinski gasket
Ben M. Hambly (1997)
10.4064/dm757-4-2017
Zeta Functions and Complex Dimensions of Relative Fractal Drums: Theory, Examples and Applications
Michel L. Lapidus (2017)
The Weil conjectures. Nw
F. Oort (2014)
Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, survey
M. L. Lapidus (2014)
Zeta functions and Weierstrass’ factorization theorem via regularized determinants and infinitesimal shifts on weighted Bergman space (tentative title)
T. Cobler (2018)
10.1016/j.aim.2016.11.034
Distance and tube zeta functions of fractals and arbitrary compact sets
Michel L. Lapidus (2017)
Tube Formula for Self-Similar Fractals with non-Steiner-like Generators
Ali Deniz (2009)
10.1007/978-1-4612-4170-6
Curves and Fractal Dimension
Claude Tricot (1994)
10.1007/BF01403069
Zeta-functions for expanding maps and Anosov flows
D. Ruelle (1976)
10.1016/0022-1236(82)90003-9
Scattering theory and the trace of the wave group
Richard B. Melrose (1982)
10.1007/s12188-014-0093-7
On the roots of the equation $$\zeta (s)=a$$ζ(s)=a
Ramunas Garunkstis (2010)
10.1142/9789813275386_0014
구조해석에서의 Generalized Functions의 응용
곽순섭 (2006)
10.1007/978-3-319-59969-4_3
Towards a fractal cohomology: Spectra of Polya--Hilbert operators, regularized determinants and Riemann zeros
Tim Cobler (2017)
10.1090/S0002-9947-07-04240-7
The zeta function of the Laplacian on certain fractals
Gregory Derfel (2005)
10.1016/J.JFA.2007.11.020
Sobolev embeddings, extensions and measure density condition
Piotr Hajlasz (2008)
Motifs, in: Leçons de mathématiques d’aujourd’hui
B. Kahn (2007)
2011
H. Brezis (1983)
10.1007/978-0-8176-4907-4
A History of Algebraic and Differential Topology, 1900 - 1960
Jean Dieudonne (1989)
Ensembles impropres et nombre dimensionnel
G. Bouligand (1928)
Dimensions aux bords d’un ouvert
C. Tricot (1987)
Üreyen, Tube formulas for selfsimilar fractals with non-Steiner-like generators
B. Demir (2012)
Tubes
A. Gray (2004)
Iteration of Rational Functions
Omar Antolín Camarena (2015)
10.1007/S00022-014-0241-3
Tube volumes via functional equations
Ali Deniz (2014)
10.1016/0001-8708(78)90013-0
A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3
Robert Seeley (1978)
10.1007/BF01086550
Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary
V. Ya. Ivrii (1980)
The packing and covering functions of some self-similar fractals
Steven P. Lalley (1988)
10.5802/AFST.1419
Truncated Infinitesimal Shifts, Spectral Operators and Quantized Universality of the Riemann Zeta Function
Hafedh Herichi (2013)
10.1016/J.AIM.2011.03.004
Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators
Michel L. Lapidus (2010)
10.1007/s004400050005
On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
Ben M. Hambly (2000)
Some analogies between number theory and dynamical systems on foliated spaces.
Christopher Deninger (1998)
10.1090/surv/120
Trace ideals and their applications
Barry Simon (1979)
10.2307/2316172
An Introduction to Harmonic Analysis
Y. Katznelson (1968)
10.1515/crll.1914.144.249
Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion.
H. Bohr (1914)
Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée
Michel L. Lapidus (1991)
10.24033/msmf.235
Valeurs propres de problèmes aux limites elliptiques irréguliers
Guy M'etivier (1977)
10.1007/s00209-003-0597-9
A local Steiner–type formula for general closed sets and applications
Daniel Hug (2004)
10.1090/S0273-0979-01-00913-2
A mad day’s work: from Grothendieck to Connes and Kontsevich The evolution of concepts of space and symmetry
Pierre Cartier (2001)
Gatzouras, Lacunarity of self-similar and stochastically self-similar sets
D. Gat (2000)
Value-Distribution and L-Functions
J. Steuding (2007)
10.1098/rspa.1987.0109
The Bakerian Lecture, 1987. Quantum chaology
Michael V. Berry (1987)
10.1007/978-1-4020-5404-4_4
THE DISTRIBUTION OF PRIME NUMBERS
Kannan Soundararajan (1933)
10.1017/CBO9781139568050.008
Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse
Bernhard Riemann (2013)
10.1090/CONM/600
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension
Michel L. Lapidus (2012)
10.1007/BF02097233
Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals
Jun Kigami (1993)
10.1016/S0246-0203(00)01068-2
Integrated density of states of self-similar Sturm–Liouville operators and holomorphic dynamics in higher dimension
Christophe Sabot (2001)
10.1090/crmm/004
Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval
D. Ruelle (1994)
Etude asymtotique des valeurs propres et de la fonction spectrale de problèmes aux limites
G. Métivier (1976)
André Weil : Oeuvres Scientifiques (Collected Papers)
A. Weil (1980)
10.24033/msmf.405
Spectral properties of self-similar lattices and iteration of rational maps
Christophe Sabot (2002)
10.1007/BF00276913
Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights
Jacqueline Fleckinger (1987)
Lectures on zeta functions and motives
Yuri I. Manin (2007)
10.1007/BF01174341
Analytische Zahlentheorie in Körpern der Charakteristikp
Friedrich Karl Schmidt (1931)
10.1088/0951-7715/24/1/013
Multifractal and higher-dimensional zeta functions
Jacques Lévy Véhel (2011)
10.1007/BF02509797
On spectral asymptotics for domains with fractal boundaries
Stanislav Alekseevich Molchanov (1997)
Theory of Bergman spaces (I)
Petros Galanopoulos (2008)
10.1112/jlms/49.2.343
Two-Dimensional Riemannian Manifolds with Fractal Boundaries
Edward Burlton Davies (1994)
ON THE ROOTS OF THE EQUATION (s) = a
Ram Unas (2014)
10.1080/10586458.2013.853630
On the Complex Dimensions of Nonlattice Fractal Strings in Connection with Dirichlet Polynomials
E. Dubon (2014)
Real Analysis: Modern Techniques and Their Applications
Gerald B. Folland (1984)
10.1007/978-3-0348-9110-3_16
Evidence for a Cohomological Approach to Analytic Number Theory
Christopher Deninger (1994)
10.2307/121009
The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets
Mitsuhiro Shishikura (1991)
Frankenhuijsen, Riemann zeros in arithmetic progression, in: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I :Fractals in Pure Mathematics (D
M. van (2013)
Wertevereteilung von Zetafunktionen
A. Reich (1980)
10.1007/BF00181273
Curvatures and currents for unions of sets with positive reach
Martina Zähle (1987)
10.1142/9789812831026_0011
Noncommutative Geometry
Andrew S. Lesniewski (1997)
10.4171/JNCG/174
Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets
Michel L. Lapidus (2014)
10.1090/conm/600/11930
Multifractal analysis via scaling zeta functions and recursive structure of lattice strings
Rolando de Santiago (2012)
10.1090/conm/600/11948
Fractal Complex Dimensions, Riemann Hypothesis and Invertibility of the Spectral Operator
Hafedh Herichi (2013)
10.1038/163508a0
Functional Analysis and Semi-Groups
R. G. Cooke (1949)
10.1017/CBO9780511526282
Convex Bodies: The Brunn-Minkowski Theory
Rolf Schneider (1993)
10.2307/2980979
An Introduction To Probability Theory And Its Applications
Feller William (1950)
10.1016/j.jmaa.2017.03.059
Complex dimensions of fractals and meromorphic extensions of fractal zeta functions
Michel L. Lapidus (2017)
10.1112/plms/s3-14A.1.157
On Tauberian Theorems
A. E. Ingham (1965)
10.1142/S0218348X10004919
TUBE FORMULAS FOR GRAPH-DIRECTED FRACTALS
Bünyamin Demir (2010)
Diffusions on fractals, in: Lectures on Probability Theory and Statistics (P. Bernard, ed.)
M. T. Barlow (1998)
Oeuvres de Jacques Hadamard
J. Hadamard (1968)
10.1016/J.JMAA.2014.03.080
A decomposition technique for integrable functions with applications to the divergence problem
Fernando L'opez Garc'ia (2013)
10.1007/S13398-014-0164-8
On the existence of fractal strings whose set of dimensions of fractality is not perfect
Gaspar Mora (2015)
10.1090/S0002-9947-1991-0994168-5
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
Michel L. Lapidus (1991)
An estimate near the boundary for the spectral counting function of the Laplace operator, Amer
R. T. Seeley (1980)
ANALYSIS ON FRACTALS
Robert S. Strichartz (1999)
10.1016/j.aml.2006.03.007
Shifts of finite type and Fibonacci Harps
Annalisa Crannell (2007)
10.1142/10728
Quantized Number Theory, Fractal Strings and the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality
Hafedh Herichi (2019)
Zeta functions and the periodic orbit structure of hyperbolic dynamics
William Parry (1990)
10.1090/conm/551/10893
The Geometry of p-Adic Fractal Strings: A Comparative Survey
Michel L. Lapidus (2011)
10.1090/conm/290
Dynamical, Spectral, and Arithmetic Zeta Functions
Michel L. Lapidus (2001)
10.1007/978-3-642-53393-8
Perturbation theory for linear operators
Tosio Kato (1980)
10.1007/978-1-4612-4422-6
Iteration of Rational Functions
Robert L. Devaney (1991)
spectral operators and quantized universality of the Riemann zeta function
H. Herichi (2013)
359 (2007)
A. Teplyaev (2005)
with applications to complex dimensions
M. L. Lapidus (2005)
10.1017/CBO9780511623813
Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability
Pertti Mattila (1995)
10.1007/b138375
Analysis of Linear Partial Differential Operators II
Lars Hörmander (2005)
10.1016/j.jfa.2014.02.013
Spectral triples for the Sierpinski gasket
Fabrice Cipriani (2014)
L-functions of mixed motives
Christopher Deninger (1991)
10.1201/9780203750889-9
The Heat Equation
Cristian E. Gutiérrez (2007)
10.1112/blms/18.2.219
The theory of the Riemann Zeta - Function with applications
Aleksandar Ivic (1985)
On the search for the asymptotic behaviour of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains, Internat
A. M. Caetano (1995)
Steuding, On the roots of the equation ζ(s) = α
J. R. Garunks̆tis (2014)
Snowflake harmonics and computer graphics: Numerical computation of spectra on fractal domains, Internat
M. L. Lapidus (1996)
10.5860/choice.48-3330a
Differential Geometry of Manifolds
U. C. De (2007)
4
E.P.J. Pearse (2009)
Universelle Werterverteilung von Eulerprodukten
A. Reich (1977)
Üreyen, On the Minkowski measurability of self-similar fractals in Rd
A. Deniz (2013)
Eigenwerte linearer partieller Differentialgleichungen
H. Weyl (1912)
10.1142/9789811215537_0002
Minkowski measurability criteria for compact sets and relative fractal drums in Euclidean spaces
Michel L. Lapidus (2016)
Operator methods in quantum mechanics
Book Reviews (2007)
10.1007/s11784-014-0207-y
Fractal zeta functions and complex dimensions of relative fractal drums
Michel L. Lapidus (2014)
10.1016/j.jmaa.2012.10.059
Characterization of Minkowski measurability in terms of surface area
Jan Rataj (2013)
10.1007/S11784-008-0062-9
Nonarchimedean Cantor set and string
Michel L. Lapidus (2008)
10.1112/BLMS/BDT043
On the existence of exponential polynomials with prefixed gaps
Gaspar Mora (2013)
10.1090/gsm/083
Functions of Several Complex Variables and Their Singularities
Wolfgang Ebeling (2007)
10.1098/rspa.1985.0057
Iterated function systems and the global construction of fractals
Michael F. Barnsley (1985)
10.3792/pjaa.61.99
On some properties of set-dynamical systems
Masayoshi Hata (1985)
10.1090/simon/004
Operator Theory: A Comprehensive Course in Analysis, Part 4
Barry Simon (2015)
10.1007/BFb0091449
Mesures et dimensions
J. P. Kahane (1976)
10.1007/bf02684747
Éléments de géométrie algébrique
Alexandre Grothendieck (1960)
10.1016/j.jnt.2005.01.002
Arithmetic progressions of zeros of the Riemann zeta function
Machiel van Frankenhuijsen (2005)
10.3840/000219
The Riemann zeta function
Ernesto Oscar Reyes (2004)
10.1007/978-3-642-61983-0_18
Functions of One Complex Variable
George Pólya (1998)
10.1007/BF01195026
Integral and current representation of Federer's curvature measures
Martina Zähle (1986)
Fractality and Lapidus zeta functions at infinity
Goran Radunović (2015)
insbesondere Begründung ihres Oberflächenbegriffs
H. Minkowski (1911)
Garćıa, Korn inequality and divergence problems on domains with an external cusp
R. G. Durán (2010)
On the volume of tubes, Amer
H. Weyl (1939)
Curvature measures of fractal sets, survey article, in: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics (D
M. Zähle (2013)
Polking, Removable singularities of solutions of linear partial differential equations
J. R. Harvey (1970)
10.1090/S0002-9939-2011-11307-8
Inner tube formulas for polytopes
Sahin Koçak (2010)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar