Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

The Pedunculopontine Nucleus Area: Critical Evaluation Of Interspecies Differences Relevant For Its Use As A Target For Deep Brain Stimulation.

M. Alam, K. Schwabe, J. Krauss
Published 2011 · Psychology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
This paper references
10.1080/02688690802448426
Surgical anatomy of the pedunculopontine and peripeduncular nuclei
L. Zrinzo (2008)
10.1097/WNR.0B013E3282638603
The peripeduncular nucleus: a novel target for deep brain stimulation?
L. Zrinzo (2007)
10.1016/0006-8993(92)91216-2
Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey
L. Hazrati (1992)
10.1016/j.tins.2004.07.009
Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?
J. Mena-Segovia (2004)
10.1037//0735-7044.107.1.166
Peripeduncular nucleus lesions in the rat: I. Effects on maternal aggression, lactation, and maternal behavior during pre- and postpartum periods.
E. M. Factor (1993)
Erratum: The peripeduncular nucleus: A novel target for deep brain stimulation? (NeuroReport (2007) 18, (1301-1302))
L. Zrinzo (2007)
10.1093/cercor/bhn093
Dopamine Innervation in the Thalamus: Monkey versus Rat
M. Á. García-Cabezas (2009)
Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse The pedunculopontine nucleus area : interspecies differences and deep brain stimulation
M Koch (2011)
10.1016/0006-8993(75)90166-3
The close proximity of catecholamine-containing cells to the ‘mesencephalic locomotor region’ (MLR)
J. Steeves (1975)
10.1001/ARCHNEUR.1962.04210060107009
A Stereotaxic Atlas of the Cat Brain.
W. Hagamen (1962)
10.1093/brain/awq273
Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene.
M. Gerards (2011)
10.1007/BF00237932
A horseradish peroxidase study of afferent connections of the globus pallidus in Macaca mulatta
J. DeVito (2004)
10.1371/journal.pone.0006623
A Comparative Neuroanatomical Study of the Red Nucleus of the Cat, Macaque and Human
S. Onodera (2009)
10.1016/S0306-4522(03)00542-6
Medullary reticulospinal tract mediating a generalized motor inhibition in cats: iii. functional organization of spinal interneurons in the lower lumbar segments
K. Takakusaki (2003)
10.1097/01.WNR.0000187629.38010.12
Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease
P. Mazzone (2005)
10.1111/j.1460-9568.2005.04402.x
Unilateral lesion of the pedunculopontine nucleus induces hyperactivity in the subthalamic nucleus and substantia nigra in the rat
S. Breit (2005)
10.1016/0361-9230(83)90151-X
The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method
A. Parent (1983)
10.1093/brain/awp229
Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease.
M. Ferraye (2010)
10.1007/BF00238711
Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons
J. Deniau (2004)
Electrophysiological analysis of interaction between the pons and medulla, the brainstem inhibitory areas
By Mileikovsky (1997)
10.1093/BRAIN/AWL346
Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease.
A. Stefani (2007)
10.1016/0306-4522(82)90202-0
The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey
R. Beckstead (1982)
10.1093/BRAIN/107.2.579
Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia.
A. Crossman (1984)
10.1007/BF01052311
Neuronal populations in the posterior group of thalamic nuclei projecting to the amygdala and auditory cortex in cats
V. A. Maiskii (2005)
10.1002/ana.20225
Brainstem pathology in DYT1 primary torsion dystonia
K. S. P. McNaught (2004)
10.1016/j.taap.2009.07.010
Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats.
M. Alam (2009)
10.1093/brain/awq314
SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse.
L. R. Fischer (2011)
10.1002/CNE.902750402
Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei
H. Lee (1988)
10.1007/BF00237848
Effects of entopeduncular lesions upon treadmill locomotion in cats
J. Vilensky (2004)
10.1002/CNE.901670402
Midbrain, diencephalic and cortical relationships of the basal nucleus of meynert and associated structures in primates
E. Jones (1976)
Smeets
M Gerards
Poll-The 143
Y Namavar
10.1093/HMG/DDI012
Transgenic mouse model of early-onset DYT1 dystonia.
P. Shashidharan (2005)
10.1007/s002210050921
The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia
L. Munro-Davies (1999)
10.1046/j.0953-816x.2001.01800.x
Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat
S. Breit (2001)
Mosaic evolution of brain structure in mammals
J. Gao
M Alam
10.2214/AJR.184.3.01840953
Midbrain ataxia: an introduction to the mesencephalic locomotor region and the pedunculopontine nucleus.
G. Hathout (2005)
10.1093/BRAIN/104.4.647-A
Locomotor control in macaque monkeys.
E. Eidelberg (1981)
10.1523/JNEUROSCI.20-17-06728.2000
Postural and Anticonvulsant Effects of Inhibition of the Rat Subthalamic Nucleus
D. Dybdal (2000)
Connections of the region (MLR) II. Afferents and efferents
E Garcia-Rill (1983)
10.1037/0735-7044.107.1.166
Peripeduncular nucleus lesions in the rat: I. Effects on maternal aggression, lactation, and maternal behavior during pre- and postpartum periods.
E. M. Factor (1993)
10.1016/S0140-6736(78)93009-X
Brain
J. Winn (1978)
10.3349/YMJ.2000.41.2.167
The pedunculopontine nucleus: its role in the genesis of movement disorders.
M. Lee (2000)
10.1016/0301-0082(95)00013-L
The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation
W. Inglis (1995)
10.1007/s00702-007-0001-8
Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients
M. Pierantozzi (2007)
10.1016/S0306-4522(00)00099-3
Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey
Moto Matsumura (2000)
10.1016/0301-0082(87)90010-4
Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats
S. Mori (1987)
10.1016/S1353-8020(10)70277-7
276 EFFECT OF GLOBUS PALLIDUS INTERNUS (GPI) AND/OR PEDUNCULOPONTINE NUCLEUS (PPN) DBS ON POSTURE AND GAIT IGNITION IN ADVANCED PARKINSON'S DISEASE
C. Schrader (2010)
10.1016/0361-9230(83)90076-X
Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents
E. Garcia-Rill (1983)
10.1523/JNEUROSCI.17-01-00438.1997
Anatomic Organization of the Basilar Pontine Projections from Prefrontal Cortices in Rhesus Monkey
J. Schmahmann (1997)
10.1093/BRAIN/AWH604
Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta).
G. Courtine (2005)
10.1093/brain/awq276
Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy.
C. Giordano (2011)
AFFERENTS AND EFFERENTS
M. Mesulam (1978)
10.1007/BF00238104
An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta
J. DeVito (2004)
10.1002/CNE.902580313
The connection of the peripeduncular area studied by retrograde and anterograde transport in the rat
P. Arnault (1987)
10.1007/BF00239387
Pallidofugal projections to thalamus and midbrain: A quantitative antidromic activation study in monkeys and cats
C. Harnois (2004)
10.1016/0361-9230(86)90059-6
Involvement of neuronal cell bodies of the mesencephalic locomotor region in the initiation of locomotor activity of freely behaving rats
S. Brudzyński (1986)
10.1016/0306-4522(94)90314-X
Outflow from the nucleus accumbens to the pedunculopontine tegmental nucleus: A dissociation between locomotor activity and the acquisition of responding for conditioned reinforcement stimulated by d-amphetamine
W. Inglis (1994)
10.1139/Y93-060
Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region.
S. Brudzyński (1993)
10.1016/j.bbr.2010.02.003
Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model
F. Rauch (2010)
10.1093/BRAIN/123.9.1767
The pedunculopontine nucleus and Parkinson's disease.
P. Pahapill (2000)
10.1016/0304-3940(84)90468-3
Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat
Makoto Amemiya (1984)
10.1007/BF02041873
Untersuchungen über die Haubenregion und ihre oberen Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung
A. Forel (2005)
10.1002/ANA.410350517
Astasia and gait failure with damage of the pontomesencephalic locomotor region
J. Masdeu (1994)
10.1016/S0361-9230(96)00165-7
Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion
L. Allen (1996)
10.1016/0006-8993(79)90800-X
The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labeling study
M. Bentivoglio (1979)
10.1016/j.parkreldis.2008.04.030
Experimental studies of pedunculopontine functions: are they motor, sensory or integrative?
P. Winn (2008)
10.1080/02688699845078
The role of descending basal ganglia connections to the brain stem in parkinsonian akinesia.
T. Aziz (1998)
10.1002/CNE.901810406
A comparison of projections of entopeduncular neurons to the thalamus, the Midbrain and the habenula in the cat
M. Filion (1978)
10.1093/brain/awp261
Unilateral pedunculopontine stimulation improves falls in Parkinson's disease.
E. Moro (2010)
10.1159/000064614
The Role of the Pedunculopontine Tegmental Nucleus in Experimental Parkinsonism in Primates
Moto Matsumura (2001)
10.1093/BRAIN/114.5.2253
Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson's disease.
W. Gai (1991)
10.1002/CNE.902590403
Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum
D. Rye (1987)
10.1001/jama.1955.02950190099043
Cytoarchitecture of the human brain stem
J. Olszewski (1954)
10.1016/0006-8993(82)90802-2
Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by flourescence retrograde labeling method
A. Parent (1982)
Focal inhibition of primate substantia nigra: a new model for human dysknetic and dystonic syndromes
D Dybdal (1997)
10.1093/brain/awq280
Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment.
P. Nopoulos (2011)
10.1523/JNEUROSCI.22-19-08711.2002
Behavioral Consequences of Bicuculline Injection in the Subthalamic Nucleus and the Zona Incerta in Rat
C. Périer (2002)
10.1097/00001756-199011000-00008
Locomotor projections from the pedunculopontine nucleus to the medioventral medulla.
R. Skinner (1990)
10.1016/0306-4522(87)90123-0
Alzheimer's disease: Neurofibrillary tangles in nuclei that project to the cerebral cortex
D. German (1987)
10.1159/000102797
Connections of the basal ganglia and of the cerebellum.
W. Mehler (1974)
10.4449/AIB.V126I3.987
The functional role of the pedunculopontine nucleus in the regulation of the electrical activity of entopeduncular neurons in the rat.
E. Scarnati (1988)
10.1097/00005072-199704000-00016
Atlas of the Human Brainstem
S. Salamat (1997)
10.1016/0006-8993(87)90675-5
The mesencephalic locomotor region. I. Activation of a medullary projection site
E. Garcia-Rill (1987)
10.1016/0006-8993(87)90676-7
The mesencephalic locomotor region. II. Projections to reticulospinal neurons
E. Garcia-Rill (1987)
10.1016/0006-8993(88)90031-5
Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats
Kelly L. Milner (1988)
10.1159/000070123
Midbrain Ataxia: Possible Role of the Pedunculopontine Nucleus in Human Locomotion
R. Bhidayasiri (2003)
10.1002/mds.22547
Dysfunction of the subthalamic nucleus induces behavioral and movement disorders in monkeys
C. Karachi (2009)
10.1159/000124038
The importance of the peripeduncular nucleus in the neuroendocrine control of sexual behavior and milk ejection in the rat.
S. Hansen (1984)
10.1016/j.jns.2006.05.036
How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies
P. Winn (2006)
10.1093/BRAIN/AWM138
PPN or PPD, what is the target for deep brain stimulation in Parkinson's disease?
J. Yelnik (2007)
10.1016/S0024-3205(99)00649-9
Role of dorsal raphe nucleus serotonin 5-HT1A receptor in the regulation of REM sleep.
J. Monti (2000)
Control of walking and running by means of electric stimulation of the midbrain
Shik Ml (1966)
Cytoarchitecture of the human brain
J Olszewski (1954)
10.1007/s00415-008-4004-7
Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction
K. Takakusaki (2008)
Immunostaining of cholinergic pontomesencephalic neurons for alpha 1 versus alpha 2 adrenergic receptors suggests different sleep-wake state activities and roles.
Y. Hou (2002)
10.1016/j.jocn.2008.03.018
Cortical and subcortical connections within the pedunculopontine nucleus of the primate Macaca mulatta determined using probabilistic diffusion tractography
B. Aravamuthan (2009)
10.1038/81834
Chronic systemic pesticide exposure reproduces features of Parkinson's disease
R. Betarbet (2000)
10.1007/s12020-009-9266-z
A direct neuronal connection between the subparafascicular and ventrolateral arcuate nuclei in non-lactating female rats. Could this pathway play a role in the suckling-induced prolactin release?
Flora K. Szabo (2009)
The participation of the inhibitory locomotor system of the brain stem in regulating pain sensitivity
Mileĭkovskiĭ BIu (1989)
10.1172/JCI42642
Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease.
C. Karachi (2010)
10.1016/0006-8993(88)90146-1
Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology
F. Zemlan (1988)
The pedunculopontine nucleus area: interspecies differences and deep brain stimulation
(2011)
10.1093/brain/awq269
Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I.
S. Sauer (2011)
10.1007/BF00228818
Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat
M. Koch (2004)
10.1016/S0306-4522(02)00340-8
Immunostaining of cholinergic pontomesencephalic neurons for α1 versus α2 adrenergic receptors suggests different sleep–wake state activities and roles
Y. Hou (2002)
[The central neurophysiological mechanisms in the regulation of inhibition].
B. I. Mileĭkovskiĭ (1990)
10.1097/00001756-200412030-00012
Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey
N. Jenkinson (2004)
10.1093/BRAIN/114.5.2283
Ageing and Parkinson's disease: substantia nigra regional selectivity.
J. Fearnley (1991)
Brainstem mechanisms of akinesia in the primate
Tz Aziz (1997)
The rat brain in sterotaxic coordinates
G Paxinos (1998)
Paulsen and the PREDICT-HD Investigators and Coordinators of the Huntington Study Group
C Nopoulos
The peripeduncular nucleus: a novel target for deep brain stimulation?
L. Zrinzo (2007)
10.1046/j.1471-4159.2003.01533.x
Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats
G. Höglinger (2003)
10.1016/S0166-4328(02)00180-8
Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats
M. Alam (2002)
10.1002/CNE.902170207
The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta
S. M. Edley (1983)
10.1016/0006-8993(94)90805-2
Lesions of the pedunculopontine tegmental nucleus abolish catalepsy and locomotor depression induced by morphine
M. C. Olmstead (1994)
10.1016/S0304-3940(97)00254-1
Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey
J. Kojima (1997)
10.1007/s00702-006-0547-x
Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression
M. Gómez-Gallego (2006)
An autoradiographic study the rat
B Turner (1981)
10.1016/S0303-8467(78)80027-4
Atlas for stereotaxy of the human brain
D. A. Bosch (1978)
[The participation of the inhibitory locomotor system of the brain stem in regulating pain sensitivity].
B. I. Mileĭkovskiĭ (1989)
The central neurophysiological mechanisms in the regulation of inhibition
Mileĭkovskiĭ BIu (1990)
10.1002/mds.21917
Bilateral pedunculopontine nuclei strokes presenting as freezing of gait
S. Kuo (2008)
10.1523/JNEUROSCI.20-09-03319.2000
Cuneiform Neurons Activated during Cholinergically Induced Active Sleep in the Cat
I. Pose (2000)
10.1002/CNE.903210403
Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies
T. Steininger (1992)
10.3171/JNS.2003.99.4.0762
Effect of ipsilateral subthalamic nucleus lesioning in a rat parkinsonian model: study of behavior correlated with neuronal activity in the pedunculopontine nucleus.
M. F. Jeon (2003)
10.1677/JOE.0.0660107
Further studies on the afferent path of the milk-ejection reflex in the brain stem of the rabbit.
J. Tindal (1975)
10.1016/0306-4522(89)90239-X
The mesencephalic centre controlling locomotion in the rat
S. K. Coles (1989)
10.1016/S0079-6123(03)43023-9
Role of basal ganglia-brainstem systems in the control of postural muscle tone and locomotion.
K. Takakusaki (2004)
10.1093/brain/awn075
Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization.
L. Zrinzo (2008)
10.1002/mds.22196
Dystonia Associated with pontomesencephalic lesions
T. J. Loher (2009)
10.1523/JNEUROSCI.19-21-09508.1999
c-fos Expression in Brainstem Premotor Interneurons during Cholinergically Induced Active Sleep in the Cat
F. Morales (1999)
10.1007/s00429-008-0174-4
A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine
H. L. Alderson (2008)
A stereotaxic atlas of the cat brain
R. Snider (1987)
10.1159/000068961
Exploration of the Role of the Upper Brainstem in Motor Control
D. Nandi (2002)
Effect of globus pallidus internus and/or pedunculopontine nucleus DBS on posture and gait ignition in advanced Parkinson's disease.? (Poster-814)
C Schrader (2010)
c-Fos expression in brainstem interneurons during cholinergically-induced active sleep in the cat
Fr Morales (1999)
10.1212/WNL.4.11.881
Cytoarchitecture of the Human Brain Stem
P.I.Y. (1954)
10.1002/CNE.901840206
The organization of feline entopeduncular nucleus projections: Anatomical studies
K. Larsen (1979)
10.1212/01.wnl.0000302175.76229.f0
Neuropathology of primary adult-onset dystonia
J. Holton (2008)
10.1016/S0306-4522(01)00094-X
Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons
E. Garcia-Rill (2001)
10.1136/jnnp.2009.179069
Physiological identification of the human pedunculopontine nucleus
S. Shimamoto (2009)
10.1227/01.NEU.0000336331.88559.CF
MONOPHASIC BUT NOT BIPHASIC PULSES INDUCE BRAIN TISSUE DAMAGE DURING MONOPOLAR HIGH‐FREQUENCY DEEP BRAIN STIMULATION
B. Piallat (2009)
10.1111/j.1525-1403.2009.00214.x
The Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus
P. Mazzone (2009)
10.1016/0006-8993(78)90993-9
Output organization of the feline entopeduncular and subthalamic nuclei
K. D. Larsen (1978)
10.1016/j.bbr.2003.08.001
Effects of ibotenate pedunculopontine tegmental nucleus lesions on exploratory behaviour in the open field
Björn Steiniger (2004)
10.1016/S0361-9230(02)00966-8
Effects of pedunculopontine tegmental nucleus lesions on emotional reactivity and locomotion in rats
S. Homs-Ormo (2003)
10.1016/0006-8993(91)90893-Z
Learning disturbances following excitotoxic lesion of cholinergic pedunculo-pontine nucleus in the rat
F. Dellu (1991)
10.1016/0031-9384(85)90337-3
Evidence for peripeduncular neurons having a role in the control of feminine sexual behavior in the rat
H. López (1985)
10.1097/00001756-199611040-00014
Injection of a GABA antagonist into the mesopontine reticular formation abolishes haloperidol-induced catalepsy in rats.
H. Miwa (1996)
10.1093/brain/awq287
Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia.
Y. Namavar (2011)
10.1212/WNL.0b013e3182886a76
Pedunculopontine nucleus
E. Benarroch (2013)
Neuronal populations in the posterior group of thalamic nuclei projecting into the amygdaloid complex and auditory cortex in the cat
Maĭskiĭ Va (1984)
10.1097/00001756-199309000-00002
Circling behaviour induced by activation of GABAA receptors in the subthalamic nucleus.
M. G. Murer (1993)



This paper is referenced by
10.1016/j.ajpath.2013.09.002
Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease.
I. S. Pienaar (2013)
10.3390/pathogens9090715
Brainstem Encephalitis Caused by Listeria monocytogenes
Pengxu Wei (2020)
10.1016/j.wneu.2017.02.110
Deep Brain Stimulation of Pedunculopontine Nucleus for Postural Instability and Gait Disorder After Parkinson Disease: A Meta-Analysis of Individual Patient Data.
J. Wang (2017)
10.1016/j.neuroscience.2017.02.008
Motor dysfunction and alterations in glutathione concentration, cholinesterase activity, and BDNF expression in substantia nigra pars compacta in rats with pedunculopontine lesion
L. Blanco-Lezcano (2017)
10.17925/USN.2011.07.02.100
Advances in Therapeutic Options for Gait and Balance in Parkinson's Disease.
N. Bohnen (2011)
10.1016/j.neuroscience.2015.12.055
Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat
F. Vitale (2016)
10.1523/JNEUROSCI.0509-12.2012
Functional Parcellation of the Lateral Mesencephalus
C. Karachi (2012)
10.4236/APD.2017.61004
Parkinson’s Disease: Examining the Role of the Pedunculopontine Nucleus via Animal Models
Bridgett Boxley (2017)
10.1016/j.neuroimage.2017.04.070
A probabilistic template of human mesopontine tegmental nuclei from in vivo 7T MRI
M. Bianciardi (2018)
10.1016/j.yebeh.2014.03.006
Posterior pedunculopontine tegmental nucleus may be involved in visual complaints with intractable epilepsy
Q. Hong (2014)
10.3389/fnana.2015.00075
One hand clapping: lateralization of motor control
Quentin Welniarz (2015)
10.1093/brain/awr315
Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism
W. Thevathasan (2012)
10.3390/bs8020020
Tyrosine Hydroxylase, Vesicular Monoamine Transporter and Dopamine Transporter mRNA Expression in Nigrostriatal Tissue of Rats with Pedunculopontine Neurotoxic Lesion
Lisette Blanco-Lezcano (2018)
10.3233/JPD-130204
Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.
D. J. Ellens (2013)
10.1016/j.neuron.2017.02.027
Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function
J. Mena-Segovia (2017)
10.1016/J.BICA.2018.07.012
A bio-inspired self-responding emotional behavior system for virtual creatures
Diana G. Gómez-Martínez (2018)
10.1002/mdc3.12046
Freezing of Backward Gait
Raul Martínez-Fernández (2014)
10.18632/oncotarget.17983
The caudal pedunculopontine tegmental nucleus may be involved in the regulation of skeletal muscle activity by melanocortinsympathetic pathway: a virally mediated trans-synaptic tracing study in spinally transected transgenic mice.
Zhi-gang He (2017)
10.1016/J.BAGA.2012.10.002
Freezing of gait-related oscillatory activity in the human subthalamic nucleus
A. Singh (2013)
10.1016/j.neulet.2014.05.062
The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease
Eunkyoung Park (2014)
10.1016/j.pharep.2018.03.010
GABAA receptor in the Pedunculopontine tegmental (PPT) nucleus: Effects on cardiovascular system.
H. Pasandi (2018)
Coordination antéropostérieure pendant la locomotion chez le chat adulte intact et suite à une lésion partielle de la moelle épinière
Yann Thibaudier (2016)
10.1093/brain/awt125
Reply: The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice.
M. Alam (2013)
10.1088/1741-2560/10/4/045005
Computational modeling of pedunculopontine nucleus deep brain stimulation.
Laura Zitella (2013)
10.1111/j.1460-9568.2011.07691.x
Probing basal ganglia functions by saccade eye movements
M. Watanabe (2011)
10.1016/j.neuroscience.2013.05.047
Critical evaluation of the anatomical location of the Barrington nucleus: Relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus
L. Blanco (2013)
10.3389/fnhum.2020.00001
Three-Year Gait and Axial Outcomes of Bilateral STN and GPi Parkinson’s Disease Deep Brain Stimulation
S. Mei (2020)
10.1111/ejn.12632
Fixational saccade‐related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys
K. Okada (2014)
10.1016/j.neuroscience.2014.12.056
Effect of neurotoxic lesion of pedunculopontine nucleus in nigral and striatal redox balance and motor performance in rats
J. Jiménez-Martín (2015)
10.3390/medicina56090452
Anatomical Characterization of the Human Structural Connectivity between the Pedunculopontine Nucleus and Globus Pallidus via Multi-Shell Multi-Tissue Tractography
Salvatore Bertino (2020)
10.1126/scitranslmed.3005972
Deep Brain Stimulation of the Midbrain Locomotor Region Improves Paretic Hindlimb Function After Spinal Cord Injury in Rats
Lukas C Bachmann (2013)
10.1177/1073858414559101
The Next Step
S. Lewis (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar