Online citations, reference lists, and bibliographies.
← Back to Search

LegumeIP: An Integrative Database For Comparative Genomics And Transcriptomics Of Model Legumes

Jun Li, X. Dai, T. Liu, P. Zhao
Published 2012 · Medicine, Computer Science, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression.
This paper references
10.1093/nar/gkm882
KEGG for linking genomes to life and the environment
M. Kanehisa (2008)
10.1101/GAD.402806
MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula.
J. Combier (2006)
10.1093/nar/gki442
InterProScan: protein domains identifier
Emmanuel Quevillon (2005)
10.1080/10635150590947131
Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary.
M. Lavin (2005)
Cluster analysis and display of genome-wide expression patterns
C. Ferris (1999)
10.1038/sj.emboj.7600295
A class of plant glycosyltransferases involved in cellular homeostasis
E. Lim (2004)
10.1371/journal.pone.0008917
H+-Independent Glutamine Transport in Plant Root Tips
Huaiyu Yang (2010)
Legume diversity and evolution in a phylogenetic context
10.1093/bioinformatics/bth397
DAGchainer: a tool for mining segmental genome duplications and synteny
B. Haas (2004)
10.1104/pp.102.016436
Syntenic Relationships between Medicago truncatulaand Arabidopsis Reveal Extensive Divergence of Genome Organization1,212
Hongyan Zhu (2003)
10.1073/pnas.0710618105
SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria
H. Gherbi (2008)
10.1111/j.1365-313X.2008.03519.x
A gene expression atlas of the model legume Medicago truncatula.
V. Benedito (2008)
10.1073/PNAS.93.14.6869
Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases.
K. Meyer (1996)
10.1104/pp.104.045278
Molecular and Functional Characterization of a Family of Amino Acid Transporters from Arabidopsis1
Yan-Hua Su (2004)
10.1089/ACM.1997.3.7
A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health.
P. Kaufman (1997)
10.1093/nar/gki128
The Legume Information System (LIS): an integrated information resource for comparative legume biology
Michael D. Gonzales (2005)
Plant Physiol
10.1371/journal.pone.0006556
Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants
Niels Høgslund (2009)
10.1101/GR.1224503
OrthoMCL: identification of ortholog groups for eukaryotic genomes.
L. Li (2003)
10.1093/nar/gkq1040
ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments
H. Parkinson (2011)
10.1101/gr.092759.109
Circos: an information aesthetic for comparative genomics.
M. Krzywinski (2009)
10.1038/nature04862
Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development
Leïla Tirichine (2006)
10.1007/s00425-011-1419-7
A nodulin/glutamine synthetase-like fusion protein is implicated in the regulation of root morphogenesis and in signalling triggered by flagellin
Anna Doskočilová (2011)
10.1186/1471-2105-10-441
The Medicago truncatula gene expression atlas web server
Ji He (2009)
10.1002/0471250953.bi0912s31
Using the Generic Synteny Browser (GBrowse_syn)
S. McKay (2010)
Legume transcription factor genes: what makes legumes so special? Plant Physiol
M Libault (2009)
10.1093/dnares/dsn008
Genome Structure of the Legume, Lotus japonicus
S. Sato (2008)
10.1155/2013/856325
DeGNServer: Deciphering Genome-Scale Gene Networks through High Performance Reverse Engineering Analysis
J. Li (2013)
10.1111/j.1365-313X.2010.04222.x
An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants.
M. Libault (2010)
10.1186/1471-2229-10-160
RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome
A. Severin (2010)
10.1093/nar/gkm841
PlantTFDB: a comprehensive plant transcription factor database
A. Guo (2008)
10.1073/PNAS.92.26.12036
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.
W. Frommer (1995)
10.1111/tpj.12119
Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation.
J. Verdier (2013)
10.1093/nar/gkp798
SoyBase, the USDA-ARS soybean genetics and genomics database
D. M. Grant (2010)
10.1111/j.1365-313X.2011.04645.x
Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program.
Sonja Kosuta (2011)
10.1371/journal.pone.0011630
Polyploidy Did Not Predate the Evolution of Nodulation in All Legumes
S. Cannon (2010)
10.1105/tpc.111.092197
Rhizobial and Fungal Symbioses Show Different Requirements for Calmodulin Binding to Calcium Calmodulin–Dependent Protein Kinase in Lotus japonicus[W][OA]
Y. Shimoda (2012)
10.1093/NAR/GKH340
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
R. Edgar (2004)
10.1038/75556
Gene Ontology: tool for the unification of biology
M. Ashburner (2000)
10.1105/tpc.106.048264
An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction[W]
P. H. Middleton (2007)
10.1093/MOLBEV/MSM088
PAML 4: phylogenetic analysis by maximum likelihood.
Z. Yang (2007)
10.1104/PP.126.2.485
Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology.
B. Winkel-Shirley (2001)
10.1038/nature10625
The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses
N. Young (2011)
Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new D1228 Nucleic Acids Research Database issue family of cytochrome P450-dependent monooxygenases
K Meyer (1996)
Update on Legume Transcription Factors Legume Transcription Factor Genes: What Makes Legumes So Special?
M. Libault (2009)
10.1038/nature08670
Genome sequence of the palaeopolyploid soybean
J. Schmutz (2010)
10.1111/j.1365-313X.2012.05098.x
Negative regulation of CCaMK is essential for symbiotic infection.
Jinqiu Liao (2012)
10.1104/pp.102.018150
The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context1
J. Doyle (2003)
10.1093/nar/30.1.207
Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
R. Edgar (2002)
10.1093/nar/gkj001
TCDB: the Transporter Classification Database for membrane transport protein analyses and information
M. Saier (2006)
Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new D1228
K. Meyer (1996)
10.1105/tpc.109.071506
PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants[W]
Sebastian Proost (2009)
10.1371/journal.pbio.0060068
Functional Adaptation of a Plant Receptor- Kinase Paved the Way for the Evolution of Intracellular Root Symbioses with Bacteria
Katharina Markmann (2008)
10.1093/nar/gkn785
InterPro: the integrative protein signature database
S. Hunter (2009)
10.1038/46058
A plant regulator controlling development of symbiotic root nodules
L. Schauser (1999)
10.1007/s00425-004-1203-z
The role of GRAS proteins in plant signal transduction and development
C. Bolle (2004)
10.1093/NAR/30.7.1575
An efficient algorithm for large-scale detection of protein families.
A. Enright (2002)
10.1186/1471-2105-10-356
phyloXML: XML for evolutionary biology and comparative genomics
Mira V. Han (2009)
10.1093/BIB/3.3.275
High-quality Protein Knowledge Resource: SWISS-PROT and TrEMBL
C. O'Donovan (2002)
10.1111/tpj.12288
Phosphorylation of S344 in the calmodulin-binding domain negatively affects CCaMK function during bacterial and fungal symbioses.
P. Routray (2013)



This paper is referenced by
10.1371/journal.pone.0136880
CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics
Mohit Verma (2015)
10.3390/agronomy10060819
Transcriptomic Analysis of L. japonicus Symbiosis Reveals New Candidate Genes for Local and Systemic Regulation of Nodule Function
Carmen M. Pérez-Delgado (2020)
10.1002/9781119409144.ch02
A snapshot of functional genetic studies in Medicago truncatula
Y. Kang (2020)
10.1007/s00438-018-1484-8
Development of sequence-based markers for seed protein content in pigeonpea
J. Obala (2018)
10.1007/978-3-030-21687-0_7
Databases: A Weapon from the Arsenal of Bioinformatics for Plant Abiotic Stress Research
Anamika (2019)
10.1007/978-981-32-9860-6_10
Role of Microbial Genomics in Plant Health Protection and Soil Health Maintenance
A. Ratnakar (2019)
10.1016/j.pbi.2012.11.007
Symbiosis and the social network of higher plants.
M. Venkateshwaran (2013)
10.1007/s11103-019-00960-5
PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots
B. J. Erickson (2020)
10.1007/978-3-319-06212-9_2
Physiological Responses of N2-Fixing Legumes to Water Limitation
Esther M. González (2015)
10.3390/ijms21113952
Genomic Analysis of Vavilov’s Historic Chickpea Landraces Reveals Footprints of Environmental and Human Selection
A. Sokolkova (2020)
10.1534/g3.114.014571
Scanning the Effects of Ethyl Methanesulfonate on the Whole Genome of Lotus japonicus Using Second-Generation Sequencing Analysis
Nur Fatihah Mohd-Yusoff (2015)
10.3835/plantgenome2013.04.0011
Transcriptome Analyses in Legumes: A Resource for Functional Genomics
R. Garg (2013)
10.1080/07352689.2014.898450
Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges
S. Araújo (2015)
10.1105/tpc.114.133496
The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection[W][OPEN]
Andrew Breakspear (2014)
10.1007/s11105-015-0950-2
Gene Expression Prediction and Hierarchical Clustering Analysis of Plant CCD genes
R. Priya (2015)
10.1038/s41598-017-05087-5
Genomic and phenotypic analysis of Vavilov’s historic landraces reveals the impact of environment and genomic islands of agronomic traits
E. Plekhanova (2017)
10.1186/1471-2164-15-271
SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways
Juan Yu (2013)
10.1186/s12864-015-1718-7
The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies
J. O’Rourke (2015)
10.1002/9781119053095.CH79
Leveraging Large‐Scale Approaches to Dissect the Rhizobia–Legume Symbiosis
Oswaldo Valdés-López (2015)
10.1007/s11738-015-1952-2
Plant and microbe genomics and beyond: potential for developing a novel molecular plant nutrition approach
F. Gómez-Merino (2015)
10.1007/978-1-4939-8633-0_13
Functional Genomics and Seed Development in Medicago truncatula: An Overview.
C. le Signor (2018)
10.1104/pp.16.01509
Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal Medicago truncatula1[OPEN]
Lisa Adolfsson (2017)
10.3390/ijms160715172
Transcriptome Sequencing of Lima Bean (Phaseolus lunatus) to Identify Putative Positive Selection in Phaseolus and Legumes
Fengqi Li (2015)
10.1002/9781118525524.CH10
Legume Seed Genomics: How to Respond to the Challenges and Potential of a Key Plant Family?
M. Noguero (2013)
10.2135/CROPSCI2017.11.0657
Identification of Consensus Regions Associated with Shoot Biomass Production in the Medicago Genome
I. Ray (2018)
Study of inheritance and identification of molecular markers for seed protein content in pigeonpea (Cajanus cajan (L.) Millsp.).
J. Obala (2017)
10.1007/978-3-319-32423-4_16
Systems Biology Approaches to Improve Drought Stress Tolerance in Plants: State of the Art and Future Challenges
J. R. Parreira (2016)
10.5152/KD.2013.02
Designing novel antibacterials: application of omics science
A. Zaman (2014)
10.1007/978-3-319-06212-9
Legume Nitrogen Fixation in a Changing Environment
S. Sulieman (2015)
10.1093/pcp/pcv189
The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi.
H. Sakai (2016)
10.7150/ijbs.24593
A comprehensive review of web-based resources of non-coding RNAs for plant science research
Peiran Liao (2018)
10.2174/1574893614666190204152500
Systems Biology Approaches Reveal a Multi-stress Responsive WRKY Transcription Factor and Stress Associated Gene Co-expression Networks in Chickpea
Aravind Kumar Konda (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar