Online citations, reference lists, and bibliographies.
← Back to Search

Causal Inference Without Balance Checking: Coarsened Exact Matching

Stefano M. Iacus, Gary King, Giuseppe Porro

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
We discuss a method for improving causal inferences called “Coarsened Exact Matching” (CEM), and the new “Monotonic Imbalance Bounding” (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of statistical properties not available in most other matching methods but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software forR, Stata, andSPSSthat implement all our suggestions.