Online citations, reference lists, and bibliographies.
← Back to Search

Strigolactone Biosynthesis Genes Of Rice Are Required For The Punctual Entry Of Arbuscular Mycorrhizal Fungi Into The Roots

Yoshihiro Kobae, H. Kameoka, Yusaku Sugimura, Katsuharu Saito, R. Ohtomo, T. Fujiwara, J. Kyozuka
Published 2018 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Arbuscular mycorrhiza (AM) is a mutualistic association between most plant species and the ancient fungal phylum Glomeromycota in roots, and it plays a key role in a plant's nutrient uptake from the soil. Roots synthesize strigolactones (SLs), derivatives of carotenoids, and exude them to induce energy metabolism and hyphal branching of AM fungi. Despite the well-documented roles of SLs in the pre-symbiotic phase, little is known about the role of SLs in the process of root colonization. Here we show that the expansion of root colonization is suppressed in the mutants of rice (Oryza sativa) SL biosynthesis genes, carotenoid cleavage dioxygenase D10 and more severely in D17. Interestingly, most of the colonization process is normal, i.e. AM fungal hyphae approach the roots and cling around them, and epidermal penetration, arbuscule size, arbuscule number per hyphopodium and metabolic activity of the intraradical mycelium are not affected in d10 and d17 mutants. In contrast, hyphopodium formation is severely attenuated. Our observations establish the requirement for SL biosynthesis genes for efficient hyphopodium formation, suggesting that SLs are required in this process. Efficient hyphopodium formation is required for the punctual internalization of hyphae into roots and maintaining the expansion of colonization.
This paper references
10.1126/science.154.3753.1189
Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant
C. Cook (1966)
10.1111/J.1469-8137.1974.TB01319.X
ULTRASTRUCTURE OF THE HOST-FUNGUS INTERFACE IN A VESICULAR-ARBUSCULAR MYCORRHIZA
G. Cox (1974)
10.1016/0048-4059(75)90088-0
Vesicular-arbuscular mycorrhizal infections in root organ cultures
B. Mosse (1975)
10.1111/J.1469-8137.1978.TB02273.X
THE OCCURRENCE OF SOME ACID PHOSPHATASES AND DEHYDROGENASES IN THE VESICULAR‐ARBUSCULAR MYCORRHIZAL FUNGUS GLOMUSMOSSEAE
R. M. Macdonald (1978)
10.1007/978-94-009-6833-2_23
The development of vesicular-arbuscular mycorrhizal infection in plant root systems
F. Sanders (1983)
10.1111/J.1469-8137.1984.TB03543.X
THE QUANTITATIVE STUDY OF MYCORRHIZAL INFECTION
N. A. Walker (1984)
10.1111/J.1469-8137.1984.TB03576.X
THE DEVELOPMENT OF ENDOMYCORRHIZAL ROOT SYSTEMS V. THE DETAILED PATTERN OF DEVELOPMENT OF INFECTION AND THE CONTROL OF INFECTION LEVEL BY HOST IN YOUNG LEEK PLANTS
J. Buwalda (1984)
10.2307/2260650
Mineral Nutrition of Higher Plants
H. Marschner (1986)
10.1111/J.1469-8137.1988.TB03698.X
Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots.
G. Bécard (1988)
10.1111/J.1469-8137.1994.TB02973.X
Early processes involved in host recognition by arbuscular mycorrhizal fungi.
M. Giovannetti (1994)
Early process involved in host recognition by arbuscular mycorrhizal fungi
M. Giovannetti (1994)
10.1016/0031-9422(94)00538-5
Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization
A. Klingner (1995)
10.1104/pp.109.2.465
Levels of a Terpenoid Glycoside (Blumenin) and Cell Wall-Bound Phenolics in Some Cereal Mycorrhizas
W. Maier (1995)
Mineral Nutrition of Higher Plants, 2nd edn
H. Marschner (1995)
10.1094/MPMI.2000.13.6.693
The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates.
M. Buée (2000)
10.1073/pnas.202474599
Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis
U. Paszkowski (2002)
10.1093/PCP/PCF029
Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots.
T. Fester (2002)
10.1126/SCIENCE.1099944
A Compound from Smoke That Promotes Seed Germination
G. Flematti (2004)
10.1038/nature03608
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
K. Akiyama (2005)
10.1146/ANNUREV.MICRO.58.030603.123749
Signaling in the arbuscular mycorrhizal symbiosis.
M. Harrison (2005)
10.1007/BF02182658
The development of vesicular-arbuscular mycorrhizal infection in plant root systems
F. Sanders (2005)
10.1371/journal.pbio.0040226
Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria
A. Besserer (2006)
10.1111/J.1365-313X.2007.03032.X
MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching.
P. Stirnberg (2007)
MAX 2 participates in an SCF complex which acts locally at the node to suppress shoot branch
J. Sun (2007)
10.1186/1471-2229-9-10
Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis
S. K. Gomez (2008)
10.1007/s00425-008-0781-6
Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions
Z. Sun (2008)
10.1038/nature07271
Strigolactone inhibition of shoot branching
V. Gómez-Roldán (2008)
10.1038/nature07272
Inhibition of shoot branching by new terpenoid plant hormones
Mikihisa Umehara (2008)
10.1105/tpc.108.062414
Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway[W]
C. Gutjahr (2008)
10.1104/pp.108.121400
GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism[C][W]
A. Besserer (2008)
10.1104/pp.108.125062
RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD11[W][OA]
D. Floss (2008)
10.1111/j.1365-313X.2008.03575.x
Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.
D. Floss (2008)
Strigolactone inhibition of shoot
V. Gomez-Roldan (2008)
10.1111/j.1469-8137.2009.02839.x
Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling.
C. Gutjahr (2009)
10.1111/j.1469-8137.2008.02725.x
Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus.
Mike Guether (2009)
10.1105/tpc.109.065987
DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth[W][OA]
H. Lin (2009)
10.1093/bioinformatics/btp120
TopHat: discovering splice junctions with RNA-Seq
Cole Trapnell (2009)
10.1093/pcp/pcp091
d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.
Tomotsugu Arite (2009)
10.1093/pcp/pcq083
FINE CULM1 (FC1) Works Downstream of Strigolactones to Inhibit the Outgrowth of Axillary Buds in Rice
Kosuke Minakuchi (2010)
10.1111/j.1365-313X.2009.04056.x
SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato.
Jonathan T Vogel (2010)
10.1146/annurev-phyto-073009-114453
The strigolactone story.
Xiaonan Xie (2010)
10.1093/pcp/pcq084
Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice
Mikihisa Umehara (2010)
10.1093/pcp/pcq075
Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness
Z. Hu (2010)
10.1093/bioinformatics/btq033
BEDTools: a flexible suite of utilities for comparing genomic features
A. Quinlan (2010)
10.1038/ncomms1046
Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis.
P. Bonfante (2010)
10.1093/pcp/pcq013
Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice.
Y. Kobae (2010)
10.1093/jxb/erq041
A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions
H. Koltai (2010)
10.1093/bioinformatics/btp616
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
M. Robinson (2010)
A tomato strigolactone-impaired mutant
S Wininger (2010)
10.1104/pp.111.186635
Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread1[W]
Claudia Hogekamp (2011)
10.1016/j.pbi.2011.03.014
Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis.
P. Bonfante (2011)
10.1105/tpc.111.089771
Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2[W][OA]
Wei Liu (2011)
10.1016/j.jplph.2010.08.011
Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato.
J. A. López-Ráez (2011)
10.1146/annurev-arplant-042110-103846
Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.
S. Smith (2011)
10.1016/b978-0-12-652840-4.x5000-1
Mycorrhizal Symbiosis
O. Alizadeh (2011)
10.1186/1471-2164-14-306
A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis
Claudia Hogekamp (2012)
10.1111/j.1365-313X.2011.04842.x
The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice.
C. Gutjahr (2012)
10.1111/j.1469-8137.2012.04339.x
The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis.
Satoko Yoshida (2012)
10.1111/j.1365-313X.2011.04810.x
Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development.
Nicole Gaude (2012)
10.1038/nature10873
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
T. Kretzschmar (2012)
10.1186/1939-8433-6-4
Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data
Y. Kawahara (2012)
10.1126/science.1218094
The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone
A. Alder (2012)
10.1186/1939-8433-6-1
Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice
Xi-feng Chen (2012)
10.1038/nature12870
DWARF 53 acts as a repressor of strigolactone signalling in rice
L. Jiang (2013)
10.1111/nph.12340
NSP1 is a component of the Myc signaling pathway.
P. Delaux (2013)
10.1093/mp/sss115
Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency.
E. Foo (2013)
10.1093/pcp/pct114
CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development.
N. Takeda (2013)
10.1016/j.pbi.2013.06.005
Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis.
Marina Nadal (2013)
10.1111/nph.12146
Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone.
A. Genre (2013)
10.1186/1471-2105-14-219
TCC: an R package for comparing tag count data with robust normalization strategies
Jianqiang Sun (2013)
Improvement of the Oryza sativa
W.R (2013)
D14-SCF D3 -dependent degradation of D53 regulates strigolactone signalling
F Zhou (2013)
D14SCF-dependent degradation of D53 regulates strigolactone signalling
F. Zhou (2013)
10.1093/pcp/pcu123
Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse.
Y. Kobae (2014)
10.1111/jipb.12155
Signaling events during initiation of arbuscular mycorrhizal symbiosis.
Alexa Schmitz (2014)
10.1093/pcp/pcu081
Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells.
Y. Kobae (2014)
10.1093/pcp/pcu045
DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching.
J. Zhao (2014)
10.1073/pnas.1314805111
Carlactone is an endogenous biosynthetic precursor for strigolactones
Yoshiya Seto (2014)
10.1038/nchembio.1660
Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis.
Yanxia Zhang (2014)
10.1016/j.plantsci.2014.04.019
Implications of non-specific strigolactone signaling in the rhizosphere.
H. Koltai (2014)
10.1073/pnas.1317360111
Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs
Catarina Cardoso (2014)
10.1016/j.plantsci.2014.10.010
Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.
J. A. López-Ráez (2015)
10.1105/tpc.114.131326
Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN]
Jongho Sun (2015)
10.1080/07352689.2014.897897
Inorganic Nitrogen Uptake and Transport in Beneficial Plant Root-Microbe Interactions
Pierre-Emmanuel Courty (2015)
10.1016/j.plantsci.2014.12.017
Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis.
M. Walter (2015)
10.1093/pcp/pcv071
RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.
Y. Handa (2015)
10.1016/j.cub.2015.01.015
Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport
Joelle Sasse (2015)
10.1111/nph.13427
Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
C. Camps (2015)
10.1186/s12864-015-2224-7
Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1
N. Hohnjec (2015)
10.1073/pnas.1504142112
Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi
C. Gutjahr (2015)
10.1126/science.aac9715
Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex
C. Gutjahr (2015)
10.3389/fpls.2015.00480
Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates
M. Giovannetti (2015)
10.1016/j.jgg.2014.12.003
Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark.
H. Kameoka (2015)
Downregulation of rice DWARF
H. 401–405. Kameoka (2015)
2015a) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor
C. Gutjahr (2015)
10.1080/00380768.2015.1106923
An improved method for bright-field imaging of arbuscular mycorrhizal fungi in plant roots
Y. Kobae (2016)
10.1038/nature19073
DWARF14 is a non-canonical hormone receptor for strigolactone
R. Yao (2016)
10.1104/pp.16.00127
Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots1
Y. Kobae (2016)
10.1038/ismej.2015.91
Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential
A. Salvioli (2016)
10.1007/s00425-016-2503-9
The importance of strigolactone transport regulation for symbiotic signaling and shoot branching
L. Borghi (2016)
2016) Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var
B. Guillotin (2016)
10.1111/nph.14246
Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom).
B. Guillotin (2017)
10.1146/annurev-arplant-042916-040925
Strigolactone Signaling and Evolution.
M. Waters (2017)
10.1038/nplants.2017.73
An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize
Marina Nadal (2017)
10.1201/9781351077514-2
Anatomy and Morphology of Va Mycorrhizae
Paola Bonfante-Fasolo (2018)



This paper is referenced by
10.1007/978-1-0716-1429-7_7
Evaluation of the Effect of Strigolactones and Synthetic Analogs on Fungi.
V. Fiorilli (2021)
10.1093/plphys/kiab043
The mechanism of host-induced germination in root parasitic plants.
D. C. Nelson (2021)
10.1093/pcp/pcab016
The Phosphate Starvation Response System: its role in the regulation of plant-microbe interactions.
Mariel C. Isidra-Arellano (2021)
10.1016/j.pbi.2021.102071
Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling
R. Hull (2021)
10.3389/fpls.2021.662025
Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight
Valentin Changenet (2021)
10.3390/microorganisms9040774
Regulation of Plant Mineral Nutrition by Signal Molecules
V. Kalia (2021)
10.1007/978-1-0716-1429-7_13
Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development.
Salar Torabi (2021)
10.1080/00103624.2021.1892728
Impacts of Arbuscular Mycorrhizal Fungi on Rice Growth, Development, and Stress Management With a Particular Emphasis on Strigolactone Effects on Root Development
Debasis Mitra (2021)
10.1007/978-3-030-36248-5_5
Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis
R. Dhanker (2020)
10.1093/jxb/eraa538
Novel Insights into Host Receptors and Receptor-mediated Signaling that Regulate Arbuscular Mycorrhizal Symbiosis.
Fahad Nasir (2020)
10.1093/jxb/eraa193
The CLE53–SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula
Magda Karlo (2020)
10.1038/s41579-020-0402-3
Unique and common traits in mycorrhizal symbioses
A. Genre (2020)
10.1007/978-981-15-2172-0_24
Can Mycorrhizal Symbiosis Mitigate the Adverse Effects of Climate Change on Crop Production?
L. A. F. Vilela (2020)
10.1101/2020.06.15.146233
Constitutive overexpression of RAM1 increases arbuscule density during arbuscular mycorrhizal symbiosis in Brachypodium distachyon
L. M. Müller (2020)
10.3389/fpls.2020.00018
The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza
J. Banasiak (2020)
10.1093/aob/mcaa159
Arbuscular mycorrhizal colonisation outcompetes root hairs in maize under low phosphorus availability.
Xiaomin Ma (2020)
10.1007/s00572-020-01006-1
Sorgoleone concentration influences mycorrhizal colonization in sorghum
Isabela Figueiredo de Oliveira (2020)
10.3389/fpls.2020.00135
Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice
Masato Shindo (2020)
10.1016/j.scitotenv.2020.141166
Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain.
X. Chen (2020)
10.1104/pp.20.00997
Constitutive Overexpression of RAM1 Leads to an Increase in Arbuscule Density in Brachypodium distachyon1[OPEN]
L. Müller (2020)
10.3389/fpls.2020.01167
Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes
A. Tsai (2020)
10.1007/s00572-020-00965-9
Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching
Quentin Taulera (2020)
10.1016/j.tplants.2020.06.005
Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges.
Rebecca J Chesterfield (2020)
10.1111/nph.16938
DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis.
Tania Ho-Plágaro (2020)
10.1111/nph.16489
Science and application of strigolactones
Ernest B. Aliche (2020)
10.1080/15592324.2020.1784544
The effects of gibberellin on the expression of symbiosis-related genes in Paris-type arbuscular mycorrhizal symbiosis in Eustoma grandiflorum
Takaya Tominaga (2020)
10.1002/9781119409144.ch61
Role of phytohormones in arbuscular mycorrhiza development
D. Das (2019)
10.1007/978-981-13-5767-1_13
Live Imaging of Arbuscular Mycorrhizal Symbiosis
Yoshihiro Kobae (2019)
10.5772/INTECHOPEN.86996
The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function
Yoshihiro Kobae (2019)
10.1007/978-3-030-12153-2
Strigolactones - Biology and Applications
H. Koltai (2019)
10.1101/cshperspect.a034686
How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?
K. Yoneyama (2019)
10.1007/978-981-13-5767-1
Methods in Rhizosphere Biology Research
D. Reinhardt (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar