Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Ketamine Inhibits Monoamine Transporters Expressed In Human Embryonic Kidney 293 Cells 

Mitsuhiro Nishimura, Kohji Sato, Tomoya Okada, Ikuto Yoshiya, Patrick Schloss, Shoichi Shimada, Masaya Tohyama

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Background Ketamine has been characterized as having psychotomimetic and sympathomimetic effects. These symptoms have raised the possibility that ketamine affects monoaminergic neurotransmission. To elucidate the relation between ketamine and monoamine transporters, the authors constructed three cell lines that stably express the norepinephrine, dopamine, and serotonin transporters and investigated the effects of ketamine on these transporters. Methods Human embryonic kidney cells were transfected using the Chen-Okayama method with the human norepinephrine, rat dopamine, and rat serotonin transporter cDNA subcloned into the eukaryotic expression vector. Using cells stably expressing these transporters, the authors investigated the effects of ketamine on the uptake of these compounds and compared them with those of pentobarbital. Results Inhibition analysis showed that ketamine significantly inhibited the uptake of all three monoamine transporters in a dose-dependent manner. The Ki (inhibition constant) values of ketamine on the norepinephrine, dopamine, and serotonin transporters were 66.8 microM, 62.9 microM, and 162 microM, respectively. Pentobarbital, a typical general anesthetic agent with no psychotic symptoms, did not affect the uptake of monoamines, however. Further, neither the glycine transporter 1 nor the glutamate/aspartate transporter was affected by ketamine, indicating that ketamine preferentially inhibits monoamine transporters. Conclusions Ketamine inhibited monoamine transporters expressed in human embryonic kidney cells in a dose-dependent manner. This result suggests that the ketamine-induced inhibition of monoamine transporters might contribute to its psychotomimetic and sympathomimetic effects through potentiating monoaminergic neurotransmission.