Online citations, reference lists, and bibliographies.
← Back to Search

Glaucoma Diagnostic Capabilities Of Optic Nerve Head Parameters As Determined By Cirrus HD Optical Coherence Tomography

K. Sung, J. Na, Youngrok Lee
Published 2012 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
PurposeTo compare the glaucoma diagnostic capabilities of optic nerve head (ONH) parameters with retinal nerve fiber layer thickness (RNFLT) using Cirrus spectral-domain optical coherence tomography (Carl Zeiss Meditec Inc, Dublin, CA; version 5.0.0.326). MethodsTwo hundred twenty-nine glaucomatous patients, 405 preperimetric glaucoma patients, and 109 healthy individuals were imaged by Cirrus optical coherence tomography optic disc cube mode. Correlations were sought between RNFLT and ONH parameters (disc and rim area, average and vertical cup-to-disc ratio, and cup volume). Areas under receiver operating characteristic curves (AUCs) of average RNFLT were compared with those of ONH parameters with respect to discrimination between glaucomatous patients and healthy individuals. Subgroup analysis was performed in early, moderate-to-advanced glaucomatous groups, glaucoma patients with a small disc area and a large disc area. ResultsRim area showed the strongest correlation with average RNFLT (r=0.663) and the highest AUC (0.871). The overall AUC for discrimination between healthy individuals and glaucomatous patients was higher for average RNFLT than for rim area (0.957 vs. 0.871, P<0.001). In the early and small disc area subgroup, the AUC of average RNFLT was significantly greater than those of all ONH parameters. In moderate-to-advanced glaucomatous groups’ patients, the AUCs of average RNFLT and rim area, in large disc area group patients, the AUC of average RNFLT and vertical cup-to-disc ratio, did not differ significantly. ConclusionsRNFLT was better than any tested ONH parameter when used for glaucoma discrimination, especially in patients with early-stage glaucoma and in glaucomatous patients with small optic discs.
This paper references
10.1016/J.AJO.2005.08.023
Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma.
A. Manassakorn (2006)
10.1038/sj.eye.6702101
Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II
M. Iliev (2006)
10.1007/s00417-005-0029-0
Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage
A. Kanamori (2005)
Clinical Decisions In Glaucoma
E. Hodapp (1993)
10.1167/IOVS.05-0366
Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study.
Z. Burgansky-Eliash (2005)
Optical coherence tomography disc assessment in optic nerves with peripapillary atrophy.
E. Lai (2003)
10.1016/J.AJO.2004.04.049
Ophthalmic imaging by spectral optical coherence tomography.
M. Wojtkowski (2004)
10.1097/IJG.0b013e31818159cb
Artifacts on the Optic Nerve Head Analysis of the Optical Coherence Tomography in Glaucomatous and Nonglaucomatous Eyes
Julio de León Ortega (2009)
10.1016/J.AJO.2005.07.044
Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease.
R. Mills (2006)
Retinal nerve fiber layer thickness in normal human
R Varna (1996)
10.1001/ARCHOPHT.123.12.1715
Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
T. Chen (2005)
10.1167/iovs.10-5546
Effect of disease severity and optic disc size on diagnostic accuracy of RTVue spectral domain optical coherence tomograph in glaucoma.
H. Rao (2011)
10.1364/OL.29.000480
In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography.
N. Nassif (2004)
10.1097/IJG.0b013e3181b6e5cd
Optic Nerve Head (ONH) Topographic Analysis by Stratus OCT in Normal Subjects: Correlation to Disc Size, Age, and Ethnicity
B. Marsh (2010)
10.1016/J.OPHTHA.2004.10.020
Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study.
C. Leung (2005)
10.2307/2531595
Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.
E. R. Delong (1988)
10.1167/iovs.10-5222
Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
Jean-Claude Mwanza (2010)
10.1097/IJG.0b013e318179f879
Longitudinal Evaluation of Optic Disc Measurement Variability With Optical Coherence Tomography and Confocal Scanning Laser Ophthalmoscopy
Dusheng Lin (2009)
10.1016/J.AJO.2006.05.004
Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects.
M. Lalezary (2006)
10.1111/j.1475-1313.2005.00304.x
Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography
R. Sihota (2005)
10.1016/j.ophtha.2010.06.036
Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
Jean-Claude Mwanza (2011)
10.1016/J.AJO.2004.08.069
Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography.
F. Medeiros (2005)
10.1167/IOVS.06-1407
Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma.
P. Naithani (2007)
10.1016/J.OPHTHA.2007.03.005
Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma.
R. Parikh (2007)
Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography
M Wojtkowski (2005)
10.1016/J.OPHTHA.2005.05.023
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
M. Wojtkowski (2005)
10.1167/IOVS.05-0069
Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography.
Mei-Ling Huang (2005)
10.1097/IJG.0b013e31815768c4
Detection of Early Glaucoma With Optical Coherence Tomography (StratusOCT)
K. Nouri-Mahdavi (2008)
10.1016/S0161-6420(96)30381-3
Retinal nerve fiber layer thickness in normal human eyes.
R. Varma (1996)
10.1364/OL.28.002067
Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.
J. D. de Boer (2003)



This paper is referenced by
10.1155/2013/789129
Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT
Kleyton Barella (2013)
10.1016/j.ophtha.2017.07.015
Detecting Structural Progression in Glaucoma with Optical Coherence Tomography.
A. Tatham (2017)
10.1007/978-3-319-94905-5
Optical Coherence Tomography in Glaucoma
N. Radcliffe (2018)
10.1371/journal.pone.0165538
The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography
J. Shin (2016)
10.1016/B978-0-7020-5193-7.00020-0
20 – Optic Disc Imaging
Naira Khachatryan (2015)
10.1097/JCMA.0000000000000257
Diagnostic utility of neuroretinal rim thickness, measured in clock-hour sectors with HD optical coherence tomography, in preperimetric glaucoma
Tzu-Yang Tai (2020)
10.1167/iovs.16-19802
Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
E. Tsikata (2016)
10.1097/IJG.0000000000001291
Diagnostic Capability of 3D Peripapillary Retinal Volume for Glaucoma Using Optical Coherence Tomography Customized Software
Yingna Liu (2019)
10.1016/j.ajo.2016.06.028
Diagnostic Performance of a Novel Three-Dimensional Neuroretinal Rim Parameter for Glaucoma Using High-Density Volume Scans.
Eric Shieh (2016)
OPTICAL COHERENCE TOMOGRAPHY IN GLAUCOMA MANAGEMENT
Diana Mihu (2011)
10.1080/02713683.2016.1220591
The Influence of Optical Coherence Tomography Measurements of Retinal Nerve Fiber Layer on Decision-Making in Glaucoma Diagnosis
L Fu (2017)
Progression in Glaucoma
Hanna Maria Öhnell (2020)
10.1167/iovs.14-14191
The relationship between retinal nerve fiber layer thickness and optic nerve head neuroretinal rim tissue in glaucoma.
N. Patel (2014)
The use of 1050nm OCT to identify changes in optic nerve head pathophysiology in glaucoma
Bethany E. Frost (2015)
10.3341/JKOS.2012.53.7.1002
Correlation Between Central Corneal Thickness and Glaucomatous Damage
Y. J. Kim (2012)
10.1097/IJG.0000000000000080
Facilitating Glaucoma Diagnosis With Intereye Retinal Nerve Fiber Layer Asymmetry Using Spectral-Domain Optical Coherence Tomography
M. Field (2016)
10.4103/ijo.IJO_157_17
Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma
Tuğba Kiriş Aydoğan (2017)
10.1007/978-3-030-46792-0
Atlas of Optical Coherence Tomography for Glaucoma
Donald L Budenz (2020)
10.1007/S11771-018-3884-7
Intraretinal layer segmentation and parameter measurement in optic nerve head region through energy function of spatial-gradient continuity constraint
Zai-liang Chen (2018)
10.1155/2014/275654
Assessment of the Optic Disc Morphology Using Spectral-Domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy
Pilar Calvo (2014)
10.1007/978-3-319-24085-5_14
Optical Coherence Tomography (OCT) in Glaucoma
Kaweh Mansouri (2016)
10.1016/j.ophtha.2012.09.051
Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma.
H. Park (2013)
10.5772/INTECHOPEN.84202
Role of Optical Coherence Tomography in the Evaluation and Management of Glaucoma
Baswati Sahoo (2019)
Retinal Measurements by spectral domain optical coherence tomography: Normative data and associations in adolescents
Yasser Mohammed Tariq (2013)
10.1136/bjophthalmol-2013-304326
OCT for glaucoma diagnosis, screening and detection of glaucoma progression
I. Bussel (2013)
10.5772/INTECHOPEN.78683
OCT in Glaucoma Diagnosis, Detection and Screening
Aydin Yildiz (2018)
10.2174/1874364101509010068
Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis
C. P. Gracitelli (2015)
Evaluating glaucoma damage: emerging imaging
Tigran Kostanyan (2015)
10.1097/IJG.0000000000000621
Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma
Huseyin Simavli (2017)
10.1007/978-3-319-94905-5_3
Role of Optical Coherence Tomography in Glaucoma
Ahmet Akman (2018)
10.18240/ijo.2018.10.09
The assessment of structural changes on optic nerve head and macula in primary open angle glaucoma and ocular hypertension.
Kenan Dagdelen (2018)
10.22608/APO.201902
Optical Coherence Tomography for the Diagnosis and Monitoring of Glaucoma
A. Ha (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar