Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

MK-801-induced Behavioral And Dopaminergic Responses In The Shell Part Of The Nucleus Accumbens In Adult Rats Are Disrupted After Neonatal Blockade Of The Ventral Subiculum

Hana Saoud, Elora Kereselidze, Séverine Eybrard, Alain Louilot

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
AbstractThe present study was conducted in the context of animal modeling of schizophrenia. It investigated in adult rats, after transient neonatal blockade of the ventral subiculum (VSub), the impact of a very specific non-competitive antagonist of NMDA receptors (MK-801) on locomotor activity and dopaminergic (DAergic) responses in the dorsomedial shell part of the nucleus accumbens (Nacc), a striatal subregion described as the common target region for antipsychotics.The functional neonatal inactivation of the VSub was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8 (PND8). Control pups were microinjected with the solvent phosphate buffered saline (PBS). Locomotor responses and DAergic variations in the dorsomedial shell part of the Nacc were measured simultaneously using in vivo voltammetry in awake, freely moving animals after sc administration of MK-801. The following results were obtained: 1) a dose-dependent increase in locomotor activity in PBS and TTX animals, greater in TTX rats/PBS rats; and 2) divergent DAergic responses for PBS and TTX animals. A decrease in DA levels with a return to around basal values was observed in PBS animals. An increase in DA levels was obtained in TTX animals. The present data suggest that neonatal blockade of the VSub results in disruption in NMDA glutamatergic transmission, causing a disturbance in DA release in the dorsomedial shell in adults rats. In the context of animal modeling of schizophrenia using the same approach it would be interesting to investigate possible changes in postsynaptic NMDA receptors-related proteins in the dorsomedial shell region in the Nacc.