Online citations, reference lists, and bibliographies.
← Back to Search

NRT2.1 Phosphorylation Prevents Root High Affinity Nitrate Uptake Activity In Arabidopsis Thaliana

Aurore Jacquot, Valentin Chaput, Adeline Mauries, Zhi Li, Pascal Tillard, Cécile Fizames, Pauline Bonillo, Fanny Bellegarde, Edith Laugier, Véronique Santoni, Sonia Hem, Antoine Martin, Alain Gojon, Waltraud Schulze, Laurence Lejay

Save to my Library
Download PDF
Analyze on Scholarcy
Share
AbstractIn Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. It revealed an essential sequence for NRT2.1 activity, located between the residues 494-513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be modulated by nitrate in wildtype plants. Altogether, these observations allowed us to propose a model for a new and essential mechanism for the regulation of NRT2.1 activity.