Online citations, reference lists, and bibliographies.
← Back to Search

The Thermal Expansion Of Pure Metals: Copper, Gold, Aluminum, Nickel, And Iron

F. C. Nix, D. MacNair
Published 1941 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Extremely accurate determinations of the linear thermal expansions have been made interferometrically from \char22{} 196\ifmmode^\circ\else\textdegree\fi{}C to temperatures about +400\ifmmode^\circ\else\textdegree\fi{}C for Al and +700\ifmmode^\circ\else\textdegree\fi{}C for Fe, Ni, Cu and Au. The relationship between true thermal coefficient of expansion and temperature conforms very well to the Grueneisen-Debye theory when values are chosen for the Debye characteristic temperatures which turn out to agree well with those chosen to achieve agreement with the Debye theory of specific heats. Our values for these characteristic temperatures are: 410\ifmmode^\circ\else\textdegree\fi{}K for Ni, 420\ifmmode^\circ\else\textdegree\fi{}K for Fe, 400\ifmmode^\circ\else\textdegree\fi{}K for Al, 325\ifmmode^\circ\else\textdegree\fi{}K for Cu, and 190\ifmmode^\circ\else\textdegree\fi{}K for Au. The magnetic Curie temperature for Ni is found to be 352\ifmmode^\circ\else\textdegree\fi{}C. In plotting true coefficient of thermal expansion versus temperature Simon and Bergmann found a horizontal plateau at about 175\ifmmode^\circ\else\textdegree\fi{} to 235\ifmmode^\circ\else\textdegree\fi{}K for Ni and Fe; but we do not confirm this.

This paper is referenced by
Anisotropic Thermal Expansion of Single Crystals of Thallium, Yttrium, Beryllium, and Zinc at Low Temperatures
R. W. Meyerhoff (1962)
Thermal expansion at elevated temperatures. I. Apparatus for use in the temperature range 300-800 K: the thermal expansion of copper
A. F. Pojur (1973)
New device for determining small changes in length
R. Groessinger (1981)
Anomalous sputtering of single crystal Ni in close-packed directions at the Curie point
V. Yurasova (1997)
Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate
H. Kuo (2008)
Finite Element Modeling of Thermal Expansion in Polymer/ZrW 2 O 8 Composites
Gregory J. Tilton (2011)
Formation energies of point defects at finite temperatures
B. Grabowski (2011)
Low‐Temperature Camera for X‐Ray Diffractometer
L. Jetter (1957)
Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity
V. Y. Bodryakov (2016)
High-frequency nanotube mechanical resonators
J. Chaste (2011)
Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates
C. Bautista-Flores (2018)
Suspended Graphene Devices for Nanoelectromechanics and for the Study of Quantum Hall Effect
V. Singh (2012)
Multimaterial Fibers in Photonics and Nanotechnology
A. Abouraddy (2013)
Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study
Y. Zhang (2012)
Temperature Dependence of Magnetocrystalline Anisotropy
R. Birss (1968)
Lattice parameter anomalies at the Curie point of pure iron
N. Ridley (1968)
A gas-actuated acoustic dilatometer for thermal expansion measurements on metals
G. E. Goring (1969)
Simple bond-order-type interatomic potential for an intermixed Fe-Cr-C system of metallic and covalent bondings in heat-resistant ferritic steels
Tomohisa Kumagai (2014)
Nonlinear acceleration sensitivity and frequency temperature behavior of quartz crystals
J. Chen (2016)
Etude de la formation et de la surfusion de gouttelettes eutectiques AuSi sur substrats de Si par diffraction de rayons X synchrotron en incidence rasante.
Remi Daudin (2012)
Identification of temperature-dependent thermal–structural properties via finite element model updating and selection
K. Sun (2015)
Approaches to mid-infrared, super-resolution imaging and spectroscopy.
Ilia M Pavlovetc (2020)
Effect of Si alloying content on the microstructure and thermophysical properties of SiC honeycomb/Al–Mg–Si composites prepared by spontaneous infiltration
Zhejian Zhang (2020)
Ni and Ag electrodes for magnesium silicide based thermoelectric generators
N. Pham (2019)
Graphene Thin Layers Formation on Monocrystalline Ni(111)/MgO(111) by Carbon Implantation and Annealing
F. Normand (2015)
Effect of as-cast microstructure heterogeneity on aging behavior of a high-pressure die-cast A380 alloy
Z. Yuan (2018)
Adiabatic Energy Loss in Hyperthermal H Atom Collisions with Cu and Au: A Basis for Testing the Importance of Nonadiabatic Energy Loss
M. Pavanello (2013)
Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel
J. Bandyopadhyay (1977)
Influence of Ferromagnetic Elastic Modulus Relaxation on the Determination of Magnetic Specific Heat of Fe, Ni, and Co
J. L. Lytton (1964)
Thermal Expansion in Weak Itinerant Ferromagnets FexCo1-xSi ($x{=}0.48$ and 0.77)
Kazuaki Shimizu (1989)
Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene
Xian-Hu Zha (2016)
The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel
T. Brown (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar