Online citations, reference lists, and bibliographies.
← Back to Search

The Thermal Expansion Of Pure Metals: Copper, Gold, Aluminum, Nickel, And Iron

F. C. Nix, D. MacNair
Published 1941 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
Extremely accurate determinations of the linear thermal expansions have been made interferometrically from \char22{} 196\ifmmode^\circ\else\textdegree\fi{}C to temperatures about +400\ifmmode^\circ\else\textdegree\fi{}C for Al and +700\ifmmode^\circ\else\textdegree\fi{}C for Fe, Ni, Cu and Au. The relationship between true thermal coefficient of expansion and temperature conforms very well to the Grueneisen-Debye theory when values are chosen for the Debye characteristic temperatures which turn out to agree well with those chosen to achieve agreement with the Debye theory of specific heats. Our values for these characteristic temperatures are: 410\ifmmode^\circ\else\textdegree\fi{}K for Ni, 420\ifmmode^\circ\else\textdegree\fi{}K for Fe, 400\ifmmode^\circ\else\textdegree\fi{}K for Al, 325\ifmmode^\circ\else\textdegree\fi{}K for Cu, and 190\ifmmode^\circ\else\textdegree\fi{}K for Au. The magnetic Curie temperature for Ni is found to be 352\ifmmode^\circ\else\textdegree\fi{}C. In plotting true coefficient of thermal expansion versus temperature Simon and Bergmann found a horizontal plateau at about 175\ifmmode^\circ\else\textdegree\fi{} to 235\ifmmode^\circ\else\textdegree\fi{}K for Ni and Fe; but we do not confirm this.



This paper is referenced by
10.1063/1.1728490
Anisotropic Thermal Expansion of Single Crystals of Thallium, Yttrium, Beryllium, and Zinc at Low Temperatures
R. W. Meyerhoff (1962)
10.1088/0022-3735/6/1/030
Thermal expansion at elevated temperatures. I. Apparatus for use in the temperature range 300-800 K: the thermal expansion of copper
A. F. Pojur (1973)
10.1063/1.1136488
New device for determining small changes in length
R. Groessinger (1981)
10.1080/10420159708216838
Anomalous sputtering of single crystal Ni in close-packed directions at the Curie point
V. Yurasova (1997)
10.1109/LPT.2008.918880
Use of Elastic Conductive Adhesive as the Bonding Agent for the Fabrication of Vertical Structure GaN-Based LEDs on Flexible Metal Substrate
H. Kuo (2008)
Finite Element Modeling of Thermal Expansion in Polymer/ZrW 2 O 8 Composites
Gregory J. Tilton (2011)
10.1002/PSSB.201046302
Formation energies of point defects at finite temperatures
B. Grabowski (2011)
10.1063/1.1715810
Low‐Temperature Camera for X‐Ray Diffractometer
L. Jetter (1957)
10.1134/S0036029516050074
Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity
V. Y. Bodryakov (2016)
10.1063/1.3663630
High-frequency nanotube mechanical resonators
J. Chaste (2011)
10.1088/2053-1591/AAE32F
Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates
C. Bautista-Flores (2018)
10.1002/9783527651122.CH6
Suspended Graphene Devices for Nanoelectromechanics and for the Study of Quantum Hall Effect
V. Singh (2012)
10.1364/FIO.2013.FTU4B.1
Multimaterial Fibers in Photonics and Nanotechnology
A. Abouraddy (2013)
10.1007/s12274-012-0221-6
Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study
Y. Zhang (2012)
10.1063/1.1656295
Temperature Dependence of Magnetocrystalline Anisotropy
R. Birss (1968)
10.1088/0022-3727/1/10/308
Lattice parameter anomalies at the Curie point of pure iron
N. Ridley (1968)
10.1088/0022-3735/2/2/303
A gas-actuated acoustic dilatometer for thermal expansion measurements on metals
G. E. Goring (1969)
10.1063/1.4904447
Simple bond-order-type interatomic potential for an intermixed Fe-Cr-C system of metallic and covalent bondings in heat-resistant ferritic steels
Tomohisa Kumagai (2014)
10.7282/T3KP84FS
Nonlinear acceleration sensitivity and frequency temperature behavior of quartz crystals
J. Chen (2016)
Etude de la formation et de la surfusion de gouttelettes eutectiques AuSi sur substrats de Si par diffraction de rayons X synchrotron en incidence rasante.
Remi Daudin (2012)
10.1016/J.YMSSP.2014.08.004
Identification of temperature-dependent thermal–structural properties via finite element model updating and selection
K. Sun (2015)
10.1039/c9cp05815j
Approaches to mid-infrared, super-resolution imaging and spectroscopy.
Ilia M Pavlovetc (2020)
10.1016/j.ceramint.2020.01.108
Effect of Si alloying content on the microstructure and thermophysical properties of SiC honeycomb/Al–Mg–Si composites prepared by spontaneous infiltration
Zhejian Zhang (2020)
10.1016/J.MTENER.2018.10.016
Ni and Ag electrodes for magnesium silicide based thermoelectric generators
N. Pham (2019)
10.4236/GRAPHENE.2015.42003
Graphene Thin Layers Formation on Monocrystalline Ni(111)/MgO(111) by Carbon Implantation and Annealing
F. Normand (2015)
10.1016/J.MATCHAR.2017.11.040
Effect of as-cast microstructure heterogeneity on aging behavior of a high-pressure die-cast A380 alloy
Z. Yuan (2018)
10.1021/JZ401955R
Adiabatic Energy Loss in Hyperthermal H Atom Collisions with Cu and Au: A Basis for Testing the Importance of Nonadiabatic Energy Loss
M. Pavanello (2013)
10.1016/0011-2275(77)90130-8
Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel
J. Bandyopadhyay (1977)
10.1063/1.1702869
Influence of Ferromagnetic Elastic Modulus Relaxation on the Determination of Magnetic Specific Heat of Fe, Ni, and Co
J. L. Lytton (1964)
10.1143/JPSJ.58.1914
Thermal Expansion in Weak Itinerant Ferromagnets FexCo1-xSi ($x{=}0.48$ and 0.77)
Kazuaki Shimizu (1989)
10.1021/ACS.JPCC.6B04192
Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo2C MXene
Xian-Hu Zha (2016)
The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel
T. Brown (2007)
See more
Semantic Scholar Logo Some data provided by SemanticScholar