Online citations, reference lists, and bibliographies.
← Back to Search

Micromechanical Mass Sensors For Biomolecular Detection In A Physiological Environment.

T. Braun, V. Barwich, M. K. Ghatkesar, A. H. Bredekamp, C. Gerber, M. Hegner, H. Lang
Published 2005 · Medicine, Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
Micromechanical cantilever arrays are used to measure time-resolved adsorption of tiny masses based on protein-ligand interactions. Here, streptavidin-biotin interactions are investigated in a physiological environment. A measurement method is introduced using higher flexural modes of a silicon cantilever in order to enhance the sensitivity of mass detection. Modeling the cantilever vibration in liquid allows the measurement of absolute mass changes. We show time-resolved mass adsorption of final 7+/-0.7 ng biotinylated latex beads. The sensitivity obtained is about 2.5 pg/Hz measuring at a center frequency of 750 kHz.
This paper references
Biosens. Bioelectron
K Bizet
Anal. Chem
B P Nelson
F M Battiston
Appl. Phys. Lett
A Gupta (1976)
10.1111/j.1365-2958.2004.04226.x
Shear‐dependent ‘stick‐and‐roll’ adhesion of type 1 fimbriated Escherichia coli
W. Thomas (2004)
J. Appl. Phys
S Kirstein
10.1063/1.117334
Frequency shifts of cantilevers vibrating in various media
S. Weigert (1996)
J. Microsc
R.-J Butt
10.1016/0014-5793(94)01296-2
Covalent anchoring of proteins onto gold‐directed NHS‐terminated self‐assembled monolayers in aqueous buffers: SFM images of clathrin cages and triskelia
P. Wagner (1994)
10.1016/0009-2614(93)E1419-H
Observation of a chemical reaction using a micromechanical sensor
J. Gimzewski (1994)
D Young (1949)
J. Appl. Phys
F.-J Elmer
Ultramicroscopy
J Tamayo
Micromechanical Mass
10.1109/JMEMS.2004.835769
Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system
M. Despont (2004)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1063/1.1667011
Single virus particle mass detection using microresonators with nanoscale thickness
A. Gupta (2004)
10.1007/11785705
Applied Scanning Probe Methods VII
B. Bhushan (2007)
Proceedings of Third IEEE International Conference on Sensors
M Drechsler (2004)
P Wagner
10.1111/j.1365-2818.1993.tb03280.x
Scan speed limit in atomic force microscopy
Hans-Jürgen Butt (1993)
10.1063/1.111407
Thermal and ambient-induced deflections of scanning force microscope cantilevers
T. Thundat (1994)
10.1073/pnas.152330199
Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array
R. McKendry (2002)
The Molecular Biology of the Cell ͑Garland Science
B Alberts
J. Microelectromech. Syst
M Despont
Mol. Microbiol
W E Thomas
Sens. Actuators B
J Homola
10.1016/S0925-4005(01)00683-9
A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout
F. M. Battiston (2001)
10.1126/SCIENCE.288.5464.316
Translating biomolecular recognition into nanomechanics.
J. Fritz (2000)
10.1016/S0006-3495(96)79810-7
Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy.
P. Wagner (1996)
10.1128/AEM.71.5.2626-2631.2005
Rapid Biosensor for Detection of Antibiotic-Selective Growth of Escherichia coli
Karin Y Gfeller (2005)
Rev. Sci. Instrum
G Y Chen
Hegner ͑unpub- lished͒
T Braun
Langmuir
X Su
10.1063/1.368335
The influence of a viscous fluid on the vibration dynamics of scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers
S. Kirstein (1998)
Biophys. J
P Wagner
10.1021/AC0010431
Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays.
B. P. Nelson (2001)
疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A
宁北芳 (2005)
10.1063/1.1144647
RESONANCE RESPONSE OF SCANNING FORCE MICROSCOPY CANTILEVERS
G. Chen (1994)
M K Ghatkesar
10.1063/1.365379
Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium
F. Elmer (1997)
10.1016/S0304-3991(00)00082-6
Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor.
J. Tamayo (2001)
10.1016/S0956-5663(97)00139-5
Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis.
K. Bizet (1998)
Chem. Phys. Lett
J K Gimzewski
10.1021/LA047997U
Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
X. Su (2005)
10.1016/S0925-4005(98)00321-9
Surface plasmon resonance sensors: review
J. Homola (1999)
10.1088/0957-4484/14/1/319
Label-free protein assay based on a nanomechanical cantilever array
Y. Arntz (2003)
Hegner, Rev. Sci. Instrum
W Grange
Appl. Phys. Lett
S Weigert
Appl. Phys. Lett
T Thundat
Appl. Environ. Microbiol
K Y Gfeller
10.1063/1.1477608
Optical tweezers system measuring the change in light momentum flux
W. Grange (2002)



This paper is referenced by
10.1529/BIOPHYSJ.105.072934
Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors.
T. Braun (2006)
Vibration Analysis of Piezoelectric Microcantilever Sensors
A. Salehi-Khojin (2008)
10.5451/unibas-006331515
Fluid characterization by resonant nanomechanical sensing
B. A. Bircher (2014)
10.1016/J.PHYSE.2013.02.018
Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms
Mitesh B. Panchal (2013)
10.1109/TBCAS.2009.2026634
A Cantilever Sensor With an Integrated Optical Readout for Detection of Enzymatically Produced Homocysteine
Stephan T. Koev (2009)
10.1039/B707401H
Micro- and nanomechanical sensors for environmental, chemical, and biological detection.
P. Waggoner (2007)
10.1038/nnano.2011.44
Comparative advantages of mechanical biosensors.
J. Arlett (2011)
10.1517/17460440903386643
Cantilever biosensors in drug discovery
Sen Xu (2009)
10.1088/1361-6404/ab92d4
Exploring the cantilever: Teaching tools for atomic force microscopy
M. Johnson (2020)
A study on the size-dependent behavior of electrostatic microbeams immersed in incompressible fluid
H. Etemadi (2017)
10.1088/0960-1317/26/9/095007
Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium
G. Kathel (2016)
10.1007/S00542-018-3741-5
Parametric study on fluid structure interaction of a 3D suspended polymeric microfluidics (SPMF3)
M. Marzban (2018)
10.3390/s151026478
Tunable Micro- and Nanomechanical Resonators
Wenming Zhang (2015)
10.1063/1.2741053
In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid
T. Y. Kwon (2007)
10.1201/B11384-16
Chapter 9Resonant Theranostics: A New Nanobiotechnological Method for Cancer Treatment Using X-Ray Spectroscopy of Nanoparticles
Kilho Eom (2011)
10.1016/J.MEE.2007.01.172
Thermomechanical noise of nanooscillators with time-dependent mass
Z. Djuric (2007)
Novel Acoustic Wave Microsystemsfor Biophysical Studies of Cells
S. U. Senveli (2016)
10.1002/9783527676330.CH1
Fundamental Theory of Resonant MEMS Devices
S. Heinrich (2015)
10.1063/1.2654274
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order
C. A. V. Eysden (2007)
10.5050/KSNVE.2014.24.12.977
Trend of Toxic Nanomaterial Detecting Sensors
Kuewhan Jang (2014)
10.18297/etd/3266
Optical direct detection of thermal vibrations of ultralow stiffness micro-nano structures.
Sri Sukanta Chowdhury (2019)
Maurício Lucena Couto candidate for MSc degree in Electrical Engineering Suspended Microchannel Resonators
Maurício Lucena Couto (2017)
10.5369/JSST.2010.19.6.403
Nano and micro structures for label-free detection of biomolecules
Kil Ho Eom (2010)
10.1007/S10404-007-0198-8
Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale
D. Erickson (2008)
10.1002/elps.201800166
Flow force augmented 3D suspended polymeric microfluidic (SPMF3) platform
M. Marzban (2019)
10.1002/wnan.82
Nanodevices in diagnostics.
Ye Hu (2011)
10.1088/0953-8984/27/27/273101
Threading DNA through nanopores for biosensing applications.
Maria Fyta (2015)
10.1371/journal.pone.0003610
Comprehensive Characterization of Molecular Interactions Based on Nanomechanics
M. K. Ghatkesar (2008)
Modeling and control of piezoactive micro and nano systems
S. Bashash (2008)
Energy Dissipation in Suspended Microchannel Resonators: theoretical, numerical and experimental validation
Andrea Gerbino (2018)
1 Fundamental Theory of Resonant MEMS Devices
S. Heinrich (2015)
10.3390/s150819351
Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force
Ivo Stachiv (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar