← Back to Search

# Accurate And Simple Analytic Representation Of The Electron-gas Correlation Energy.

Published 1992 · Physics, Medicine

We propose a simple analytic representation of the correlation energy ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$ for a uniform electron gas, as a function of density parameter ${\mathit{r}}_{\mathit{s}}$ and relative spin polarization \ensuremath{\zeta}. Within the random-phase approximation (RPA), this representation allows for the ${\mathit{r}}_{\mathit{s}}^{\mathrm{\ensuremath{-}}3/4}$ behavior as ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}\ensuremath{\infty}. Close agreement with numerical RPA values for ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$,0), ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$,1), and the spin stiffness ${\mathrm{\ensuremath{\alpha}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$)=${\mathrm{\ensuremath{\partial}}}^{2}$${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$, \ensuremath{\zeta}=0)/\ensuremath{\delta}${\mathrm{\ensuremath{\zeta}}}^{2}$, and recovery of the correct ${\mathit{r}}_{\mathit{s}}$ln${\mathit{r}}_{\mathit{s}}$ term for ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0, indicate the appropriateness of the chosen analytic form. Beyond RPA, different parameters for the same analytic form are found by fitting to the Green's-function Monte Carlo data of Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)], taking into account data uncertainties that have been ignored in earlier fits by Vosko, Wilk, and Nusair (VWN) [Can. J. Phys. 58, 1200 (1980)] or by Perdew and Zunger (PZ) [Phys. Rev. B 23, 5048 (1981)]. While we confirm the practical accuracy of the VWN and PZ representations, we eliminate some minor problems with these forms. We study the \ensuremath{\zeta}-dependent coefficients in the high- and low-density expansions, and the ${\mathit{r}}_{\mathit{s}}$-dependent spin susceptibility. We also present a conjecture for the exact low-density limit. The correlation potential ${\mathrm{\ensuremath{\mu}}}_{\mathit{c}}^{\mathrm{\ensuremath{\sigma}}}$(${\mathit{r}}_{\mathit{s}}$,\ensuremath{\zeta}) is evaluated for use in self-consistent density-functional calculations.