Online citations, reference lists, and bibliographies.

Nonequilibrium Thermodynamics Of Spacetime: The Role Of Gravitational Dissipation

G. Chirco, S. Liberati
Published 2010 · Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
In [T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).] it was shown that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. More recently, in the attempt to extend the same approach to the case of $f(R)$ theories of gravity, it was found that a nonequilibrium setting is indeed required in order to fully describe both this theory as well as classical general relativity (GR) [C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006).]. Here, elaborating on this point, we show that the dissipative character leading to nonequilibrium spacetime thermodynamics is actually related---both in GR as well as in $f(R)$ gravity---to nonlocal heat fluxes associated with the purely gravitational/internal degrees of freedom of the theory. In particular, in the case of GR we show that the internal entropy production term is identical to the so-called tidal heating term of Hartle-Hawking. Similarly, for the case of $f(R)$ gravity, we show that dissipative effects can be associated with the generalization of this term plus a scalar contribution whose presence is clearly justified within the scalar-tensor representation of the theory. Finally, we show that the allowed gravitational degrees of freedom can be fixed by the kinematics of the local spacetime causal structure, through the specific equivalence principle formulation. In this sense, the thermodynamical description seems to go beyond Einstein's theory as an intrinsic property of gravitation.
This paper references
Phys
L. Susskind (1995)
10.1103/PhysRevD.34.373
Quantum source of entropy for black holes.
Bombelli (1986)
Phys
T. Jacobson (1995)
JEHP 11
C. Eling (2008)
10.1088/0034-4885/51/8/002
Extended Irreversible Thermodynamics
D. Jou (1993)
10.1016/j.physletb.2007.03.005
Thermodynamic Behavior of Field Equations for f(R) Gravity
M. Akbar (2007)
10.1007/BF01645515
Energy and angular momentum flow into a black hole
S. Hawking (1972)
10.1119/1.13992
The Mathematical Theory of Black Holes
S. Chandrasekhar (1983)
10.1103/PhysRevLett.96.121301
Nonequilibrium thermodynamics of spacetime.
Christopher Eling (2006)
10.1119/1.17748
Theory and Experiment in Gravitational Physics
C. Will (1981)
10.1103/PhysRevD.78.061501
f ( R ) gravity equation of state
E. Elizalde (2008)
10.1103/PhysRevD.14.870
Notes on black-hole evaporation
W. Unruh (1976)
A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics
E. Poisson (2004)
Phys
L. Bombelli (1986)
10.1086/153180
Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation.
S. Teukolsky (1974)
10.1103/PhysRevLett.38.1372
Irreversible Thermodynamics of Black Holes
P. Candelas (1977)
10.1119/1.1969680
Non-Equilibrium Thermodynamics
S. R. Groot (1962)
Living Rev
C. M. Will (2006)
The Large Scale Structure of Spacetime
S. Hawking (1971)
Semi-Riemannian Geometry with Applications to Relativity
B. O'Neill (1983)
10.1017/CBO9780511606601
A Relativist's Toolkit: Contents
E. Poisson (2004)
Rev
G. Policastro (2001)
10.1103/PhysRevD.29.1656
Acceleration radiation in interacting field theories
W. Unruh (1984)
10.1103/PhysRevD.74.104015
Thermodynamic route to field equations in Lanczos-Lovelock gravity
A. Paranjape (2006)
10.1007/BF01645742
The four laws of black hole mechanics
J. M. Bardeen (1973)
10.1063/1.2811504
Black Holes: The Membrane Paradigm
K. Thorne (1988)
10.1017/CBO9780511564246
Theory and Experiment in Gravitational Physics by Clifford M. Will
C. Will (1993)
10.1007/BF02345020
Particle creation by black holes
S. Hawking (1975)
Comm
J. M. Bardeen (1973)
Black Hole Entropy and Induced Gravity
T. Jacobson (1994)
10.1088/0264-9381/24/7/012
The strong equivalence principle from a gravitational gauge structure
Jean-Marc Gérard (2007)
Astrophys
T. Padmanabhan (2003)
10.1016/0550-3213(85)90418-3
On the Quantum Structure of a Black Hole
G. '. Hooft (1985)
Comm
S. W. Hawking (1972)
Phys
W. G. Unruh (1984)
Comm
R. Haag (1974)
Phys
A. Paranjape (2006)
Int
T. Padmanabhan (2008)
10.1063/1.531249
The World as a hologram
L. Susskind (1995)
10.1103/PhysRevLett.75.1260
Thermodynamics of spacetime: The Einstein equation of state.
Jacobson (1995)
10.1177/0095399710362655
Class
Camilla Stivers (2010)
10.1103/PhysRevD.79.104020
Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries
Dawood Kothawala (2009)
10.1103/PhysRevD.7.2333
Black Holes and Entropy
J. Bekenstein (1973)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
Phys
R. H. Price (1986)
ApJ
S. A. Teukolsky (1974)
Phys
P. Candelas (1977)
10.1103/PhysRevD.33.915
Membrane viewpoint on black holes: Properties and evolution of the stretched horizon.
Price (1986)
10.1103/PhysRevLett.94.161103
Metric of a tidally distorted nonrotating black hole.
E. Poisson (2005)
Festschrift: A Collection of Talks
G. ’t Hooft (1993)
Phys
J. D. Bekenstein (1973)
Phys
C. Eling (2006)
Phys
E. Poisson (2004)
10.1088/1126-6708/2008/11/048
Hydrodynamics of spacetime and vacuum viscosity
Christopher Eling (2008)
10.1142/S0218271808014114
GRAVITY: THE INSIDE STORY
T. Padmanabhan (2008)
10.1063/1.3128124
Theories of gravity
L. King (1973)
10.1103/PhysRevD.74.044016
Field equations from a surface term
T. Sotiriou (2006)
Theory and experiment in gravitational physics (Univeristy Press, Cambridge
C. M. Will (1993)
Phys
T. P. Sotiriou (2006)
Adv
J. M. Maldacena (1998)
10.1103/PhysRevD.70.084044
Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation
E. Poisson (2004)
10.1023/A:1026654312961
The Large-N Limit of Superconformal Field Theories and Supergravity
J. Maldacena (1997)



This paper is referenced by
10.1088/0034-4885/73/4/046901
Thermodynamical aspects of gravity: new insights
T. Padmanabhan (2010)
10.1155/2018/7801854
Apparent Horizon and Gravitational Thermodynamics of Universe in the Eddington-Born-Infeld Theory
J. Ding (2018)
10.1007/JHEP10(2015)097
Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity
S. Chakraborty (2015)
and a thermodynamic treatment of Einstein's equations
Ghazal Geshnizjani (2011)
10.1088/1742-6596/314/1/012033
Non-equilibrium Spacetime Thermodynamics, Entanglement viscosity and KSS bound
Goffredo Chirco (2011)
10.1017/9780511667497.009
Infrared Behavior of Interacting Quantum Field
B. Hu (2020)
10.1007/JHEP10(2011)140
Conservative entropic forces
M. Visser (2011)
10.1088/1475-7516/2010/06/014
Thermodynamics in $f(R)$ gravity in the Palatini formalism
Kazuharu Bamba (2010)
Stochastic Congruence Equations for Spacetime Fluctuations
Antony Speranza (2012)
10.1103/PhysRevD.81.044034
Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories
Shao-feng Wu (2010)
10.1142/S0217751X12501606
Einstein Equation of State and Black Hole Membrane Paradigm in f(R) Gravity
Yuki Yokokura (2011)
1 2 N ov 2 01 2 Dynamical evaporation of quantum horizons
Daniele Pranzetti (2012)
10.1007/978-3-642-40157-2_44
Weyl Curvature Hypothesis in Terms of Spacetime Thermodynamics
Takuya Maki (2014)
Strange Horizons: Understanding Causal Barriers Beyond General Relativity
Bethan Cropp (2016)
10.1103/PhysRevD.96.024021
Raychaudhuri equation in spacetimes with torsion
Paulo Luz (2017)
10.1103/PhysRevD.81.084061
Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity
Rong-gen Cai (2010)
10.1088/0264-9381/30/16/165004
Dynamical evaporation of quantum horizons
Daniele Pranzetti (2013)
10.1088/1361-6382/aab1c7
A gravitational energy–momentum and the thermodynamic description of gravity
Giovanni Luca Acquaviva (2018)
10.3390/e12092067
Superstatistics and Gravitation
Octavio Obregón (2010)
10.1103/PhysRevD.82.024036
Holography in action
S. Kolekar (2010)
10.1088/1361-6633/aaa4ab
Higher-order theories of gravity: diagnosis, extraction and reformulation via non-metric extra degrees of freedom-a review.
Alessio Belenchia (2018)
10.1103/PhysRevD.81.124040
Surface Density of Spacetime Degrees of Freedom from Equipartition Law in theories of Gravity
T. Padmanabhan (2010)
10.1088/0264-9381/32/5/055005
Gravitational energy, local holography and non-equilibrium thermodynamics
L. Freidel (2015)
Stochastic Congruence Equations for Spacetime Fluctuations by Antony
A. Speranza (2013)
Quantum Indefinite Spacetime
Ding Jia (2017)
10.1017/9780511667497.013
Metric Correlations at One-Loop: In-In and Large N
B. Hu (2020)
10.3842/SIGMA.2012.027
Emergent Models for Gravity: an Overview of Microscopic Models
L. Sindoni (2012)
10.1140/EPJP/I2014-14223-Y
Some features of the entropic gravity scenario for spherically symmetric solutions derived from f (R) gravity
S. Hamid Mehdipour (2014)
10.1088/0264-9381/32/16/165011
Quasilocal energy and thermodynamic equilibrium conditions
Nezihe Uzun (2015)
10.1017/9780511667497.022
Two-Point Metric Perturbations in de Sitter
B. Hu (2020)
10.12942/lrr-2010-3
f(R) Theories
Antonio De Felice (2010)
10.1142/S0217751X15300392
Generalized information and entanglement entropy, gravitation and holography
Octavio Obregón (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar