Online citations, reference lists, and bibliographies.
← Back to Search

Thermal Rayleigh-Marangoni Convection In A Three-layer Liquid-metal-battery Model.

Thomas Koellner, T. Boeck, J. Schumacher
Published 2017 · Materials Science, Medicine, Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.
This paper references
The Journal of Physical Chemistry 59
E. Van Artsdalen (1955)
10.1017/S0022112002002501
Sidewall finite-conductivity effects in confined turbulent thermal convection
R. Verzicco (2002)
Phys
O. Zikanov (2015)
10.1016/0013-4686(82)80082-0
Density and surface tension of molten alkali halides and their binary mxitures
M. Smirnov (1982)
Hydrodynamic and Hydromagnetic Stability.
R. A. Wentzell (1964)
10.1136/BMJ.323.7325.1375/A
I and i
K. Barraclough (2001)
10.1021/J150553A013
A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension
L. Girifalco (1957)
10.1021/cr300205k
Liquid metal batteries: past, present, and future.
H. Kim (2013)
655
J. Bailon-Cuba (2010)
Phys
T. Boeck (2002)
10.1063/1.4821536
Multiscale structures in solutal Marangoni convection: Three-dimensional simulations and supporting experiments
Thomas Koellner (2013)
Physics of Fluids 5
P. Géoris (1993)
Physics of Fluids 25
T. Köllner (2013)
Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2007 Edition
R. Hultgren (2007)
Review of the chemical
V. A. Maroni (1973)
389
P. Géoris (1999)
10.1088/0169-5983/44/3/031413
Pattern formation in anticonvective systems
D. Merkt (2008)
Metallurgical and materials transactions. B, Process metallurgy and materials processing science
Metals Minerals (1994)
AIChE Journal 5
C. Sternling (1959)
Journal of Fluid Mechanics 389
P. Géoris (1999)
10.2307/j.ctvzxx9kj
Spectra and pseudospectra : The behavior of nonnormal matrices and operators
L. Trefethen (2005)
Fluid Dyn
D. Merkt (2012)
10.1063/1.858834
Thermocapillary convection in a multilayer system
P. Georis (1993)
Fluid 26 Dyn
T. Boeck (2008)
Stability And Transition In Shear Flows
Christina Freytag (2016)
10.1007/s00162-015-0378-1
Thermal convection in a liquid metal battery
Y. Shen (2015)
K
H. Kim (2012)
Chem
E. Van Artsdalen (1955)
10.1017/jfm.2016.69
Penetrative internally heated convection in two and three dimensions
D. Goluskin (2015)
10.1017/jfm.2016.457
Global and local statistics in turbulent convection at low Prandtl numbers
J. D. Scheel (2015)
10.1137/1.9780898719598
Spectral Methods in MATLAB
L. Trefethen (2000)
Fluid Dynamics Research 44
D. Merkt (2012)
791
T. Köllner (2016)
New J
N. Weber (2013)
473
R. Verzicco (2002)
Molecular theory of capillarity
J. S. Rowlinson (1982)
The Journal of Physical Chemistry 61
L. Girifalco (1957)
Journal of Fluid Mechanics 791
T. Köllner (2016)
10.1063/1.1843132
Convective oscillations in multilayer systems under the combined action of buoyancy and thermocapillary effect
A. Nepomnyashchy (2005)
10.1002/3527603115
Nonlinear Dynamics of Surface-Tension-Driven Instabilities: COLINET:NONLINEAR DYNAMIC O-BK
P. Colinet (2005)
Tellus 16
P. Welander (1964)
Journal of Fluid Mechanics 473
R. Verzicco (2002)
Physics of Fluids 14
T. Boeck (2002)
Phys
A. Nepomnyashchy (2005)
18
E. Sparrow (1964)
10.1007/S11663-998-0141-8
Interfacial tension between aluminum and NaCl-KCl-based salt systems
R. Roy (1998)
10.1364/josa.48.000434
Physics of Fluids
G. Bruin (1997)
Fluid 26 Dyn
T. Boeck (2008)
and D
D. J. Bradwell (2012)
Phys
P. Géoris (1993)
Chem
L. Girifalco (1957)
10.1017/S0022112010000820
Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection
Jorge Bailon-Cuba (2010)
10.1017/S002211207600075X
Convection due to internal heat sources
M. Tveitereid (1976)
10.1088/1367-2630/15/4/043034
Numerical simulation of the Tayler instability in liquid metals
N. Weber (2013)
L
C. Fazio (2015)
053114-22 THERMAL RAYLEIGH-MARANGONI CONVECTION IN A
D. Williams (2006)
Metallurgical Materials Trans
R. R. Roy (1998)
Nature 514
K. Wang (2014)
Journal of Fluid Mechanics 771
W. Herreman (2015)
and M
P. Colinet (2001)
10.4135/9781506326139.n491
Organisation for Economic Co-operation and Development
A. Hasan (2007)
Fluid Dyn
T. Boeck (2008)
10.1063/1.4875815
Mixing in a liquid metal electrode
D. Kelley (2014)
Physical Review E 92
O. Zikanov (2015)
and D
D. Edwards (1991)
Theoretical and Computational Fluid Dynamics Smoke Control of Fires in Subway Stations ∗
F. Chen (2003)
10.1126/science.44.1136.500-a
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES.
E. B. Wilson (1915)
802
J. D. Scheel (2016)
Proc
J. Schumacher (2014)
10.1002/AIC.690050421
Interfacial turbulence: Hydrodynamic instability and the marangoni effect
C. V. Sternling (1959)
10.1017/S0022112064000386
Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile
E. Sparrow (1964)
and T
C. Canuto (1988)
The European Physical Journal E 35
F. Chillà (2012)
Spectral Methods in MATLAB , vol . 10 ( SIAM , Philadelphia , 2000 ) . [ 35 ] D
D. S. Henningson (2012)
Thomas-Alyea, Electrochemical Systems
K.E.J. Newman (2012)
Chem
D. J. Bradwell (2012)
10.1073/pnas.1410791111
Small-scale universality in fluid turbulence
J. Schumacher (2014)
New Journal of Physics 15
N. Weber (2013)
Journal of Power Sources 275
X. Ning (2015)
D: Appl
M.-I. Char (1994)
Eur
F. Chillà (2012)
Phys
T. Köllner (2013)
10.1140/epje/i2012-12058-1
New perspectives in turbulent Rayleigh-Bénard convection
F. Chillà (2012)
10.1017/S0022112064000763
Surface tension and buoyancy effects in cellular convection
D. Nield (1964)
Journal of the American Chemical Society 134
D. J. Bradwell (2012)
Jour- nal of Fluid Mechanics 655
J. Bailon-Cuba (2010)
Nature (London) 514
K. Wang (2014)
AIChE J
C. Sternling (1959)
10.1021/J150524A007
Electrical Conductance and Density of Molten Salt Systems: KCl–LiCl, KCl–NaCl and KCl–KI
E. R. V. Artsdalen (1955)
10.1038/nature13700
Lithium–antimony–lead liquid metal battery for grid-level energy storage
Kangli Wang (2014)
10.1017/JFM.2015.159
Tayler instability in liquid metal columns and liquid metal batteries
W. Herreman (2015)
10.1017/S0022112099004930
Investigation of thermocapillary convection in a three-liquid-layer system
P. Géoris (1999)
10.1177/001452469000101110
"J."
G.G. Stokes (1890)
10.1142/7579
An Introduction to Interfaces & Colloids: The Bridge to Nanoscience
J. Berg (2009)
ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, Tennessee
D. Williams (2006)
10.1007/978-1-4613-4595-4_3
Review of chemical, physical, and thermal properties of lithium related to its use in fusion reactors
E. Cairns (1972)
Electrochim
M. Smirnov (1982)
76
M. Tveitereid (1976)
Phys
N. Weber (2015)
19
D. Nield (1964)
10.1063/1.4905325
The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries
N. Weber (2014)
10.1103/PhysRevE.92.063021
Metal pad instabilities in liquid metal batteries.
O. Zikanov (2015)
Journal of Fluid Mechanics创刊50周年
朱克勤 (2006)
Physics of Fluids 27
N. Weber (2015)
Journal of Physics D: Applied Physics 27
M.-I. Char (1994)
Theor
Y. Shen (2016)
55
F. A. Kulacki (1972)
Phys
D. H. Kelley (2014)
10.1088/0022-3727/27/4/012
Stability analysis of Benard-Marangoni convection in fluids with internal heat generation
Ming-I Char (1994)
10.1017/S0022112072001855
Thermal convection in a horizontal fluid layer with uniform volumetric energy sources
F. A. Kulacki (1972)
10.1021/ja209759s
Magnesium-antimony liquid metal battery for stationary energy storage.
David J. Bradwell (2012)
Tech
V. Maroni (1973)
10.1017/JFM.2016.63
The eruptive regime of mass-transfer-driven Rayleigh–Marangoni convection
Thomas Koellner (2016)
10.1016/J.JPOWSOUR.2014.10.173
Self-healing Li–Bi liquid metal battery for grid-scale energy storage
X. Ning (2015)
10.3402/TELLUSA.V16I3.8976
Convective instability in a two-layer fluid heated uniformly from above
P. Welander (1964)
Electrochimica Acta 27
M. Smirnov (1982)
10.1007/978-0-387-36291-5
Interfacial Convection in Multilayer Systems
A. A. Nepomnyashchy (2006)
771
W. Herreman (2015)
10.1063/1.1506923
Three-dimensional convection in a two-layer system with anomalous thermocapillary effect
T. Boeck (2002)



This paper is referenced by
10.1103/PhysRevFluids.2.063501
Subcritical convection in an internally heated layer
L. Xiang (2017)
10.1063/1.5115870
Numerical analysis of Marangoni effect on natural convection in two-layer fluid structure inside a two-dimensional rectangular cavity
Fahim Mahtab Abir (2019)
10.1016/j.powera.2020.100004
Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow
N. Weber (2020)
10.1016/J.ELECOM.2019.106496
Mass transport induced asymmetry in charge/discharge behavior of liquid metal batteries
P. Personnettaz (2019)
10.1007/978-3-319-72131-6_4
Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries
Rakan F. Ashour (2018)
10.1007/s00162-018-0456-2
Shallow water modeling of rolling pad instability in liquid metal batteries
O. Zikanov (2017)
Modelling Rayleigh-B\'enard convection and electro-vortex flow in liquid metal batteries
D. Keogh (2020)
10.1088/1757-899X/228/1/012013
Liquid metal batteries - materials selection and fluid dynamics
T. Weier (2017)
10.1115/1.4038699
Fluid Mechanics of Liquid Metal Batteries
D. Kelley (2017)
10.1017/JFM.2018.223
Coupling and stability of interfacial waves in liquid metal batteries
G. Horstmann (2017)
Steady state detection for computational fluid dynamics
Martin Boesler (2017)
10.1098/rsos.171309
Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries
Ze Sun (2018)
Electro-vortex flow vs. buoyancy in liquid metal batteries
W. Herreman (2019)
Modelling Rayleigh-B\'enard convection coupled with electro-vortex flow in liquid metal batteries.
D. Keogh (2020)
10.1103/PhysRevFluids.2.123501
Predicting transition ranges to turbulent viscous boundary layers in low Prandtl number convection flows
J. D. Scheel (2017)
10.1103/physrevfluids.4.113702
Numerical simulation of electrovortex flows in cylindrical fluid layers and liquid metal batteries
W. Herreman (2019)
10.1063/1.5123170
Numerical simulation of rolling pad instability in cuboid liquid metal batteries
L. Xiang (2019)
10.1016/J.JPOWSOUR.2019.226926
Effects of magnetically induced flow on electrochemical reacting processes in a liquid metal battery
Y. Jiang (2019)
10.1016/j.jpowsour.2018.08.069
Thermally driven convection in Li||Bi liquid metal batteries
P. Personnettaz (2018)
10.1016/j.jpowsour.2017.12.042
Competing forces in liquid metal electrodes and batteries
Rakan F. Ashour (2018)
10.1016/j.applthermaleng.2018.07.067
Electromagnetically driven convection suitable for mass transfer enhancement in liquid metal batteries
N. Weber (2018)
Semantic Scholar Logo Some data provided by SemanticScholar