← Back to Search

# Thermal Rayleigh-Marangoni Convection In A Three-layer Liquid-metal-battery Model.

Thomas Koellner, T. Boeck, J. Schumacher

Published 2017 · Materials Science, Medicine, Physics

The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

This paper references

The Journal of Physical Chemistry 59

E. Van Artsdalen (1955)

10.1017/S0022112002002501

Sidewall finite-conductivity effects in confined turbulent thermal convection

R. Verzicco (2002)

Phys

O. Zikanov (2015)

10.1016/0013-4686(82)80082-0

Density and surface tension of molten alkali halides and their binary mxitures

M. Smirnov (1982)

Hydrodynamic and Hydromagnetic Stability.

R. A. Wentzell (1964)

10.1136/BMJ.323.7325.1375/A

I and i

K. Barraclough (2001)

10.1021/J150553A013

A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension

L. Girifalco (1957)

10.1021/cr300205k

Liquid metal batteries: past, present, and future.

H. Kim (2013)

655

J. Bailon-Cuba (2010)

Phys

T. Boeck (2002)

10.1063/1.4821536

Multiscale structures in solutal Marangoni convection: Three-dimensional simulations and supporting experiments

Thomas Koellner (2013)

Physics of Fluids 5

P. Géoris (1993)

Physics of Fluids 25

T. Köllner (2013)

Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2007 Edition

R. Hultgren (2007)

Review of the chemical

V. A. Maroni (1973)

389

P. Géoris (1999)

10.1088/0169-5983/44/3/031413

Pattern formation in anticonvective systems

D. Merkt (2008)

Metallurgical and materials transactions. B, Process metallurgy and materials processing science

Metals Minerals (1994)

AIChE Journal 5

C. Sternling (1959)

Journal of Fluid Mechanics 389

P. Géoris (1999)

10.2307/j.ctvzxx9kj

Spectra and pseudospectra : The behavior of nonnormal matrices and operators

L. Trefethen (2005)

Fluid Dyn

D. Merkt (2012)

10.1063/1.858834

Thermocapillary convection in a multilayer system

P. Georis (1993)

Fluid 26 Dyn

T. Boeck (2008)

Stability And Transition In Shear Flows

Christina Freytag (2016)

10.1007/s00162-015-0378-1

Thermal convection in a liquid metal battery

Y. Shen (2015)

K

H. Kim (2012)

Chem

E. Van Artsdalen (1955)

10.1017/jfm.2016.69

Penetrative internally heated convection in two and three dimensions

D. Goluskin (2015)

10.1017/jfm.2016.457

Global and local statistics in turbulent convection at low Prandtl numbers

J. D. Scheel (2015)

10.1137/1.9780898719598

Spectral Methods in MATLAB

L. Trefethen (2000)

Fluid Dynamics Research 44

D. Merkt (2012)

791

T. Köllner (2016)

New J

N. Weber (2013)

473

R. Verzicco (2002)

Molecular theory of capillarity

J. S. Rowlinson (1982)

The Journal of Physical Chemistry 61

L. Girifalco (1957)

Journal of Fluid Mechanics 791

T. Köllner (2016)

10.1063/1.1843132

Convective oscillations in multilayer systems under the combined action of buoyancy and thermocapillary effect

A. Nepomnyashchy (2005)

10.1002/3527603115

Nonlinear Dynamics of Surface-Tension-Driven Instabilities: COLINET:NONLINEAR DYNAMIC O-BK

P. Colinet (2005)

Tellus 16

P. Welander (1964)

Journal of Fluid Mechanics 473

R. Verzicco (2002)

Physics of Fluids 14

T. Boeck (2002)

Phys

A. Nepomnyashchy (2005)

18

E. Sparrow (1964)

10.1007/S11663-998-0141-8

Interfacial tension between aluminum and NaCl-KCl-based salt systems

R. Roy (1998)

10.1364/josa.48.000434

Physics of Fluids

G. Bruin (1997)

Fluid 26 Dyn

T. Boeck (2008)

and D

D. J. Bradwell (2012)

Phys

P. Géoris (1993)

Chem

L. Girifalco (1957)

10.1017/S0022112010000820

Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection

Jorge Bailon-Cuba (2010)

10.1017/S002211207600075X

Convection due to internal heat sources

M. Tveitereid (1976)

10.1088/1367-2630/15/4/043034

Numerical simulation of the Tayler instability in liquid metals

N. Weber (2013)

L

C. Fazio (2015)

053114-22 THERMAL RAYLEIGH-MARANGONI CONVECTION IN A

D. Williams (2006)

Metallurgical Materials Trans

R. R. Roy (1998)

Nature 514

K. Wang (2014)

Journal of Fluid Mechanics 771

W. Herreman (2015)

and M

P. Colinet (2001)

10.4135/9781506326139.n491

Organisation for Economic Co-operation and Development

A. Hasan (2007)

Fluid Dyn

T. Boeck (2008)

10.1063/1.4875815

Mixing in a liquid metal electrode

D. Kelley (2014)

Physical Review E 92

O. Zikanov (2015)

and D

D. Edwards (1991)

Theoretical and Computational Fluid Dynamics Smoke Control of Fires in Subway Stations ∗

F. Chen (2003)

10.1126/science.44.1136.500-a

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES.

E. B. Wilson (1915)

802

J. D. Scheel (2016)

Proc

J. Schumacher (2014)

10.1002/AIC.690050421

Interfacial turbulence: Hydrodynamic instability and the marangoni effect

C. V. Sternling (1959)

10.1017/S0022112064000386

Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile

E. Sparrow (1964)

and T

C. Canuto (1988)

The European Physical Journal E 35

F. Chillà (2012)

Spectral Methods in MATLAB , vol . 10 ( SIAM , Philadelphia , 2000 ) . [ 35 ] D

D. S. Henningson (2012)

Thomas-Alyea, Electrochemical Systems

K.E.J. Newman (2012)

Chem

D. J. Bradwell (2012)

10.1073/pnas.1410791111

Small-scale universality in fluid turbulence

J. Schumacher (2014)

New Journal of Physics 15

N. Weber (2013)

Journal of Power Sources 275

X. Ning (2015)

D: Appl

M.-I. Char (1994)

Eur

F. Chillà (2012)

Phys

T. Köllner (2013)

10.1140/epje/i2012-12058-1

New perspectives in turbulent Rayleigh-Bénard convection

F. Chillà (2012)

10.1017/S0022112064000763

Surface tension and buoyancy effects in cellular convection

D. Nield (1964)

Journal of the American Chemical Society 134

D. J. Bradwell (2012)

Jour- nal of Fluid Mechanics 655

J. Bailon-Cuba (2010)

Nature (London) 514

K. Wang (2014)

AIChE J

C. Sternling (1959)

10.1021/J150524A007

Electrical Conductance and Density of Molten Salt Systems: KCl–LiCl, KCl–NaCl and KCl–KI

E. R. V. Artsdalen (1955)

10.1038/nature13700

Lithium–antimony–lead liquid metal battery for grid-level energy storage

Kangli Wang (2014)

10.1017/JFM.2015.159

Tayler instability in liquid metal columns and liquid metal batteries

W. Herreman (2015)

10.1017/S0022112099004930

Investigation of thermocapillary convection in a three-liquid-layer system

P. Géoris (1999)

10.1177/001452469000101110

"J."

G.G. Stokes (1890)

10.1142/7579

An Introduction to Interfaces & Colloids: The Bridge to Nanoscience

J. Berg (2009)

ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, Tennessee

D. Williams (2006)

10.1007/978-1-4613-4595-4_3

Review of chemical, physical, and thermal properties of lithium related to its use in fusion reactors

E. Cairns (1972)

Electrochim

M. Smirnov (1982)

76

M. Tveitereid (1976)

Phys

N. Weber (2015)

19

D. Nield (1964)

10.1063/1.4905325

The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries

N. Weber (2014)

10.1103/PhysRevE.92.063021

Metal pad instabilities in liquid metal batteries.

O. Zikanov (2015)

Journal of Fluid Mechanics创刊50周年

朱克勤 (2006)

Physics of Fluids 27

N. Weber (2015)

Journal of Physics D: Applied Physics 27

M.-I. Char (1994)

Theor

Y. Shen (2016)

55

F. A. Kulacki (1972)

Phys

D. H. Kelley (2014)

10.1088/0022-3727/27/4/012

Stability analysis of Benard-Marangoni convection in fluids with internal heat generation

Ming-I Char (1994)

10.1017/S0022112072001855

Thermal convection in a horizontal fluid layer with uniform volumetric energy sources

F. A. Kulacki (1972)

10.1021/ja209759s

Magnesium-antimony liquid metal battery for stationary energy storage.

David J. Bradwell (2012)

Tech

V. Maroni (1973)

10.1017/JFM.2016.63

The eruptive regime of mass-transfer-driven Rayleigh–Marangoni convection

Thomas Koellner (2016)

10.1016/J.JPOWSOUR.2014.10.173

Self-healing Li–Bi liquid metal battery for grid-scale energy storage

X. Ning (2015)

10.3402/TELLUSA.V16I3.8976

Convective instability in a two-layer fluid heated uniformly from above

P. Welander (1964)

Electrochimica Acta 27

M. Smirnov (1982)

10.1007/978-0-387-36291-5

Interfacial Convection in Multilayer Systems

A. A. Nepomnyashchy (2006)

771

W. Herreman (2015)

10.1063/1.1506923

Three-dimensional convection in a two-layer system with anomalous thermocapillary effect

T. Boeck (2002)

This paper is referenced by

10.1103/PhysRevFluids.2.063501

Subcritical convection in an internally heated layer

L. Xiang (2017)

10.1063/1.5115870

Numerical analysis of Marangoni effect on natural convection in two-layer fluid structure inside a two-dimensional rectangular cavity

Fahim Mahtab Abir (2019)

10.1016/j.powera.2020.100004

Numerical simulation of mass transfer enhancement in liquid metal batteries by means of electro-vortex flow

N. Weber (2020)

10.1016/J.ELECOM.2019.106496

Mass transport induced asymmetry in charge/discharge behavior of liquid metal batteries

P. Personnettaz (2019)

10.1007/978-3-319-72131-6_4

Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries

Rakan F. Ashour (2018)

10.1007/s00162-018-0456-2

Shallow water modeling of rolling pad instability in liquid metal batteries

O. Zikanov (2017)

Modelling Rayleigh-B\'enard convection and electro-vortex flow in liquid metal batteries

D. Keogh (2020)

10.1088/1757-899X/228/1/012013

Liquid metal batteries - materials selection and fluid dynamics

T. Weier (2017)

10.1115/1.4038699

Fluid Mechanics of Liquid Metal Batteries

D. Kelley (2017)

10.1017/JFM.2018.223

Coupling and stability of interfacial waves in liquid metal batteries

G. Horstmann (2017)

Steady state detection for computational fluid dynamics

Martin Boesler (2017)

10.1098/rsos.171309

Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

Ze Sun (2018)

Electro-vortex flow vs. buoyancy in liquid metal batteries

W. Herreman (2019)

Modelling Rayleigh-B\'enard convection coupled with electro-vortex flow in liquid metal batteries.

D. Keogh (2020)

10.1103/PhysRevFluids.2.123501

Predicting transition ranges to turbulent viscous boundary layers in low Prandtl number convection flows

J. D. Scheel (2017)

10.1103/physrevfluids.4.113702

Numerical simulation of electrovortex flows in cylindrical fluid layers and liquid metal batteries

W. Herreman (2019)

10.1063/1.5123170

Numerical simulation of rolling pad instability in cuboid liquid metal batteries

L. Xiang (2019)

10.1016/J.JPOWSOUR.2019.226926

Effects of magnetically induced flow on electrochemical reacting processes in a liquid metal battery

Y. Jiang (2019)

10.1016/j.jpowsour.2018.08.069

Thermally driven convection in Li||Bi liquid metal batteries

P. Personnettaz (2018)

10.1016/j.jpowsour.2017.12.042

Competing forces in liquid metal electrodes and batteries

Rakan F. Ashour (2018)

10.1016/j.applthermaleng.2018.07.067

Electromagnetically driven convection suitable for mass transfer enhancement in liquid metal batteries

N. Weber (2018)