Please confirm you are human
(Sign Up for free to never see this)
← Back to Search
An Octopus Anatomy-inspired Robotic Arm
Published 2010 · Engineering, Computer Science
This paper focuses on the design of a robotic arm inspired to the anatomy and morphology of an octopus arm. The octopus is a boneless animal and its amazing dexterity is due to its muscular structure where longitudinal (axial), transverse (radial) and oblique muscles seamlessly interact while preserving hydrostaticity i.e. volume conservation (“muscular hydrostat” [19]). Mimicking some features of the octopus is instrumental to design a dexterous and compliant system. After analysing the relevant anatomical and morphological characteristics of the octopus arm, the key biomechanical features of interest to the design of a robotic arm have been identified. A design methodology has been developed based on the analysis of the muscular hydrostat properties. A prototype arm has been built using bespoke contracting pneumatic muscles and expanding elements. In the current stage of development the system has 15 actuated degrees of motion (DOM) and 8 degrees of freedom (DOF), all independently controllable through valves and a dedicated electronics and software interface. Pros and cons of the current design as well as practical prototyping trade-offs are thoroughly described.