Online citations, reference lists, and bibliographies.
← Back to Search

A New Accurate And Precise 3-D Segmentation Method For Skeletal Structures In Volumetric CT Data

Yan Kang, K. Engelke, W. Kalender
Published 2003 · Medicine, Computer Science, Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
We developed a highly automated three-dimensionally based method for the segmentation of bone in volumetric computed tomography (CT) datasets. The multistep approach starts with three-dimensional (3-D) region-growing using local adaptive thresholds followed by procedures to correct for remaining boundary discontinuities and a subsequent anatomically oriented boundary adjustment using local values of cortical bone density. We describe the details of our approach and show applications in the proximal femur, the knee, and the skull. The accuracy of the determination of geometrical parameters was analyzed using CT scans of the semi-anthropomorphic European spine phantom. Depending on the settings of the segmentation parameters cortical thickness could be determined with an accuracy corresponding to the side length of 1 to 2.5 voxels. The impact of noise on the segmentation was investigated by artificially adding noise to the CT data. An increase in noise by factors of two and five changed cortical thickness corresponding to the side length of one voxel. Intraoperator and interoperator precision was analyzed by repeated analysis of nine pelvic CT scans. Precision errors were smaller than 1% for trabecular and total volumes and smaller than 2% for cortical thickness. Intraoperator and interoperator precision errors were not significantly different. Our segmentation approach shows: 1) high accuracy and precision and is 2) robust to noise, 3) insensitive to user-defined thresholds, 4) highly automated and fast, and 5) easy to initialize.
This paper references
Bestimmung von Dichte und Stabilität des menschlichen Oberschenkelknochens auf der Basis von CT Daten
M. Heitz (1995)
10.1016/S0167-8655(97)00131-1
An improved seeded region growing algorithm
A. Mehnert (1997)
10.1016/S0730-725X(99)00040-5
Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation.
T. Stammberger (1999)
10.1007/BFb0056308
Segmentation of Carpal Bones from 3d CT Images Using Skeletally Coupled Deformable Models
T. Sebastian (1998)
10.1016/S1361-8415(00)00016-5
Segmentation of the skull in MRI volumes using deformable model and taking the partial volume effect into account
H. Rifai (2000)
Evaluation of femoral mineral density and strength using volumetric CT and anatomical coordinate systems
M. Heitz (1994)
10.1016/0720-048X(95)00631-Y
The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT.
W. Kalender (1995)
Measurement of 3D spatial resolution in multi-slice spiral computed tomography
T.O.J. Fuchs (2001)
10.1117/12.387758
Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours
J. A. Lynch (2000)
10.1088/0031-9155/44/3/017
Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters.
S. Prevrhal (1999)
10.1007/BFb0056310
Tensor Controlled Local Structure Enhancement of CT Images for Bone Segmentation
C. Westin (1998)
Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes
W. Press (1992)
Volumetric segmentation
A. F. Goldszal (2000)
10.1016/0031-3203(95)00169-7
A survey on evaluation methods for image segmentation
Y. Zhang (1996)
10.2307/2334313
Testing for serial correlation in least squares regression. I.
J. Durbin (1950)
10.1016/S0167-8655(97)00083-4
Evaluation and comparison of different segmentation algorithms
Y. Zhang (1997)
10.1146/ANNUREV.BIOENG.2.1.315
Current methods in medical image segmentation.
D. Pham (2000)
10.1148/RADIOLOGY.164.2.3602380
Vertebral bone mineral analysis: an integrated approach with CT.
W. Kalender (1987)
10.1109/34.295913
Seeded Region Growing
R. Adams (1994)
10.1016/B978-012077790-7/50016-3
12 – Volumetric Segmentation
A. F. Goldszal (2000)
10.1016/S0031-3203(00)00052-2
A measure of quality for evaluating methods of segmentation and edge detection
R. Román-Roldán (2001)
Evaluation and comparison of different segmentation algorithms,”Pattern
Y. J. Zhang (1997)
10.1007/BF01774016
Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques
C. Glüer (2005)
10.1016/S0895-6111(01)00013-1
Segmentation of avascular necrosis of the femoral head using 3-D MR images.
R. A. Zoroofi (2001)
10.1007/978-1-4612-4380-9_21
Testing for serial correlation in least squares regression. II.
J. Durbin (1951)



This paper is referenced by
10.1080/10255842.2013.843676
Principal component analysis in construction of 3D human knee joint models using a statistical shape model method
Tsung-Yuan Tsai (2015)
10.3389/fendo.2020.00503
Associations of Muscle Size and Density With Proximal Femur Bone in a Community Dwelling Older Population
Lu Yin (2020)
10.1117/12.710345
HWT - hybrid watershed transform: optimal combination of hierarchical interactive and automated image segmentation
H. Hahn (2007)
10.1016/j.media.2006.10.001
Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data
J. Staal (2007)
AUTOMATIC SEGMENTATION OF THE LOWER LIMB ANATOMY
L. Paelinck (2017)
10.4230/DFU.SciViz.2010.179
Pre-operative Planning and Intra-operative Guidance for Shoulder Replacement Surgery
Charl P. Botha (2010)
10.1007/S40846-015-0079-7
Graph-Cut-Based Segmentation of Proximal Femur from Computed Tomography Images with Shape Prior
Junbin Huang (2015)
10.1587/TRANSINF.E92.D.2253
A Hybrid Technique for Thickness-Map Visualization of the Hip Cartilages in MRI
Mahdieh Khanmohammadi (2009)
10.1053/J.SODO.2004.01.005
Micro-Computed Tomography: High Resolution Imaging of Bone and Implants in Three Dimensions
G. Yip (2004)
10.1007/978-3-642-11615-5_9
Semi-automatic Segmentation of Fractured Pelvic Bones for Surgical Planning
J. Fornaro (2010)
10.1109/ISBI.2011.5872806
Segmentation of vertebrae using level sets with expectation maximization algorithm
M. S. Aslan (2011)
10.1109/TMI.2009.2026370
Graph-Matching Based CTA
D. Maksimov (2009)
10.1109/ICIP.2009.5413887
Segmentation of trabecular bones from Vertebral bodies in volumetric CT spine images
Melih S. Aslan (2009)
10.1007/978-3-319-12508-4_13
Model-Based Segmentation, Reconstruction and Analysis of the Vertebral Body from Spinal CT
Melih S. Aslan (2015)
10.1016/j.bone.2018.01.013
Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.
Karen L. Troy (2018)
10.1109/IST.2017.8261450
3D simultaneous segmentation and registration of vertebral bodies for accurate BMD measurements
Lisa Boneta (2017)
Computer assisted diagnosis (CAD) for the rapid automated measurement of body fat tissue from whole body MRI
P. Whelan (2004)
10.1109/ICIP.2010.5652849
3D vertebrae segmentation using graph cuts with shape prior constraints
M. S. Aslan (2010)
10.1109/IEMBS.2006.259306
Validation and Improved Registration of Bone Segmentation Using Contour Coherency
M. Greenspan (2006)
10.1109/SSIAI.2016.7459162
Towards automatic 3D bone marrow segmentation
Chuong T. Nguyen (2016)
10.4995/Thesis/10251/68485
Caracterización cuantitativa de la patología discal y lumbar degenerativa mediante análisis de imagen por resonancia magnética y detección y segmentación de la columna vertebral en pacientes oncológicos a partir del análisis de imagen en tomografía computarizada.
Silvia Ruiz España (2016)
10.1007/BF02345952
Radiograph-based femur morphing method
E. Zanetti (2006)
10.1007/s11548-016-1357-8
Quantitative analysis of the patellofemoral motion pattern using semi-automatic processing of 4D CT data
D. Forsberg (2016)
MULTISCALE CHARACTERIZATION OF BONE (CARACTÉRISATIONS MULTIÉ- CHELLES DES TISSUS OSSEUX, DE L'IN VITRO À L'IN VIVO)
Q. Grimal (2015)
10.1007/978-3-319-24553-9_76
Prediction of Trabecular Bone Anisotropy from Quantitative Computed Tomography Using Supervised Learning and a Novel Morphometric Feature Descriptor
Vimal Chandran (2015)
10.1109/SOPO.2010.5504463
Auto-Threshold Bone Segmentation Based on CT Image and Its Application on CTA Bone-Subtraction
K. Zhao (2010)
10.1007/s11548-010-0474-z
Extreme leg motion analysis of professional ballet dancers via MRI segmentation of multiple leg postures
Jérôme Schmid (2010)
10.3109/10929080802195783
Accuracy assessment of CT-based outer surface femur meshes
F. Gelaude (2008)
10.1016/J.ORTHRES.2005.01.001
In vitro analysis of the cement mantle of femoral hip implants: Development and validation of a CT‐scan based measurement tool
T. Scheerlinck (2005)
10.5120/12328-8567
Enhancing Visual Diagnosis of X-Ray Images by the Method of Selective Dilation
M. Subashini (2013)
Fracture ostéoporotique chez l'homme : estimation du risque en tomodensitométrie à la hanche
J. Lellouche (2015)
10.1016/j.ejrad.2016.03.002
Computed tomography: What and how does it measure?
M. Mazonakis (2016)
See more
Semantic Scholar Logo Some data provided by SemanticScholar