Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Magnetic Properties Of Marine Magnetotactic Bacteria In A Seasonally Stratified Coastal Pond (Salt Pond, MA, USA)

B. Moskowitz, D. Bazylinski, R. Egli, R. Frankel, K. Edwards
Published 2008 · Geology

Save to my Library
Download PDF
Analyze on Scholarcy
Share
SUMMARY Magnetic properties of suspended material in the water columns of freshwater and marine environments provide snapshots of magnetic biomineralization that have yet to be affected by the eventual time-integration and early diagenetic effects that occur after sediment deposition. Here, we report on the magnetism, geochemistry and geobiology of uncultured magnetite- and greigite-producing magnetotactic bacteria (MB) and magnetically responsive protists (MRP) in Salt Pond (Falmouth, MA, USA), a small coastal, marine basin (∼5 m deep) that becomes chemically stratified during the summer months. At this time, strong inverse O2 and H2S concentration gradients form in the water column and a well-defined oxic–anoxic interface (OAI) is established at a water depth of about 3.5 m. At least four morphological types of MB, both magnetite and greigite producers, and several species of magnetically responsive protists are found associated with the OAI and the lower sulphidic hypolimnion. Magnetic properties of filtered water were determined through the water column across the OAI and were consistent with the occurrence of magnetite- and greigite-producing MB at different depths. Sharp peaks in anhysteretic remanent magnetization (ARM) and saturation isothermal remanent magnetization (SIRM) and single-domain (SD) values of ARM/SIRM occur within the OAI corresponding to high concentrations of MB and MRP with magnetically derived cell densities of 10 4 –10 6 ml −1 . Low-temperature ( 1 per cent) is present within magnetite magnetosomes, produced either
This paper references
10.1016/0012-821X(95)00131-U
Magnetic properties of sedimentary greigite (Fe3S4)
A. P. Roberts (1995)
10.1016/S1040-6182(01)00069-6
Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change
I. Snowball (2002)
10.1016/S0016-7037(00)00481-6
Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils.
K. Thomas-Keprta (2000)
10.1016/J.EPSL.2006.03.041
Experimental Observation of Magnetosome Chain Collapse in Magnetotactic Bacteria: Sedimentological, paleomagnetic, and evolutionary implications
A. Kobayashi (2006)
10.1126/SCIENCE.1123231
Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK
A. Komeili (2006)
10.1016/J.EPSL.2004.05.001
Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Norway
Ø. Paasche (2004)
10.1029/2000JB900140
Low‐temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction
A. Smirnov (2000)
10.1029/JB095IB04P04437
Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental borderland
B. Leslie (1990)
10.1016/0012-821X(96)00027-1
Magnetofossils in the sediment of Lake Baikal, Siberia
J. Peck (1996)
10.1029/95GL00888
Superparamagnetism and reduction diagenesis in pelagic sediments: enhancement or depletion?
J. Tarduno (1995)
10.1029/2006JB004529
Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: A case study of mutant magnetotactic bacteria
R. Kopp (2006)
10.1111/J.1462-2920.2007.01330.X
Population dynamics of marine magnetotactic bacteria in a meromictic salt pond described with qPCR.
S. Simmons (2007)
10.1007/978-1-4615-3810-3_7
Observations of Magnetosome Organization, Surface Structure, and Iron Biomineralization of Undescribed Magnetic Bacteria: Evolutionary Speculations
Hojatollah Vali (1991)
10.1007/BF01829320
Biogenic and lithogenic magnetic minerals in Atlantic and Pacific deep sea sediments and their paleomagnetic significance
H. Vali (1989)
10.1038/320611A0
Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean
N. Petersen (1986)
10.1029/2001GL014197
Low‐temperature remanence in stable single domain magnetite
Brian Carter-Stiglitz (2002)
10.1017/CBO9780511612794
Rock Magnetism: Frontmatter
D. Dunlop (1997)
10.1029/2005JG000068
Depth Distribution of Magnetofossils in Near-Surface Sediments From the Blake/Bahama Outer Ridge, Western North Atlantic Ocean, Determined by Low-Temperature Magnetism
B. Housen (2006)
10.1128/AEM.70.10.6230-6239.2004
Spatiotemporal Distribution of Marine Magnetotactic Bacteria in a Seasonally Stratified Coastal Salt Pond
S. Simmons (2004)
10.1016/S0006-3495(86)83471-3
Magnetite and magnetotaxis in algae.
F. F. de Araujo (1986)
Magnetic properties of sedimentary greigite ( Fe 3 S 4 ) , Earth planet
M. Gruska (1995)
10.1016/0304-8853(95)00078-X
Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field
Ietje Penninga (1995)
10.1007/7171_044
Characterization of Bacterial Magnetic Nanostructures Using High-Resolution Transmission Electron Microscopy and Off-Axis Electron Holography
M. Pósfai (2006)
10.1038/330208A0
Anaerobes pumping iron
R. Frankel (1987)
10.1016/S0006-3495(97)78132-3
Magneto-aerotaxis in marine coccoid bacteria.
R. Frankel (1997)
10.1016/J.EPSL.2006.06.036
Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1
M. Pósfai (2006)
10.1016/0012-821X(81)90222-3
Electron-optical characterization of bacterial magnetite
K. M. Towe (1981)
10.1016/S0304-8853(02)00353-0
Pulsed-field-remanence measurements on individual magnetotactic bacteria
M. Hanzlik (2002)
10.1029/93GL01483
The effect of oxidation on the Verwey transition in magnetite
Ö. Özdemir (1993)
10.1038/343161A0
Occurrence of magnetic bacteria in soil
J. Fassbinder (1990)
10.1029/GL016I007P00665
A Comparison of Magnetite Particles Produced Anaerobically by Magnetotactic and Dissimilatory Iron‐Reducing Bacteria
B. Moskowitz (1989)
10.1016/J.MARCHEM.2007.02.001
Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin
Dane Percy (2008)
10.1099/IJS.0.64857-0
'Candidatus Magnetoglobus multicellularis', a multicellular, magnetotactic prokaryote from a hypersaline environment.
F. Abreu (2007)
10.1016/J.PCE.2004.03.010
Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes
R. Egli (2004)
10.1016/S0009-2541(00)00211-4
Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond
D. Bazylinski (2000)
10.1146/ANNUREV.MI.48.100194.001523
Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation.
K. H. Nealson (1994)
10.1029/2006JB004575
First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles
A. Chen (2007)
10.2113/0540217
Biologically Controlled Mineralization in Prokaryotes
D. Bazylinski (2003)
Experimental observa ­ tion of magnetosome chain collapse in magnetotactic bacteria : sedimenta ­ logical , paleomagnetic , and evolutionary implications , Earth planet
A. Komeili (2006)
10.1128/AEM.53.7.1536-1540.1987
Rapid assay for microbially reducible ferric iron in aquatic sediments.
D. Lovley (1987)
10.4319/LO.1969.14.3.0454
SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1
J. Cline (1969)
10.1007/978-94-009-0905-2_17
Magnetic Bacteria in Lake Sediments
N. Petersen (1989)
10.1103/PhysRevB.76.054406
Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite
R. Prozorov (2007)
10.1016/J.PEPI.2005.04.014
Environmental magnetism of nanophase iron minerals: Testing the biomineralization pathway
S. Banerjee (2006)
The reactivity of sedimen ­ tary iron minerals toward sulphide
M. Jackson (1992)
10.1016/0012-821X(93)90128-V
Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments
H. Petermann (1993)
10.1515/9781501509247-008
Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance
D. Bazylinski (1997)
More on the low - temperature magnetism of stable single domain magnetite : re ­ versibility , and nonstoichiometry
J. L. Kirschuink (2004)
10.1029/2003gl019155
More on the low-temperature magnetism of stable single domain magnetite: Reversibility and non-stoichiometry: REVERSIBILITY AND NON-STOICHIOMETRY OF MAGNETITE
Brian Carter-Stiglitz (2004)
10.1016/0301-9268(89)90062-4
Biogenic Magnetite in Stromatolites. II. Occurrence in Ancient Sedimentary Environments
S. -. Chang (1989)
10.1038/nature04382
An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria
A. Scheffel (2006)
10.1130/0091-7613(1998)026<1064:OCFCTM>2.3.CO;2
Organic carbon flux controls the morphology of magnetofossils in marine sediments
T. Yamazaki (1998)
10.1126/SCIENCE.1066577
Intracellular Iron Minerals in a Dissimilatory Iron-Reducing Bacterium
S. Glasauer (2002)
10.1029/2001JB000671
Anhysteretic remanent magnetization of fine magnetic particles
R. Egli (2002)
10.1029/JB095IB04P04363
"Biogenic magnetite from surface holocene carbonate sediments,Great Bahama Bank""
D. Mcneill (1990)
10.1029/95JB03041
Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis
L. Tauxe (1996)
10.1016/J.PCE.2004.04.001
Characterization of individual rock magnetic components by analysis of remanence curves.
R. Egli (2004)
10.2475/AJS.292.9.659
The reactivity of sedimentary iron minerals toward sulfide
D. Canfield (1992)
10.1016/J.EPSL.2005.06.029
Rock magnetic properties of uncultured magnetotactic bacteria
Y. Pan (2005)
10.1016/0025-3227(94)90003-5
Evidence for bacterial palaeoecological origin of mineral magnetic cycles in oxic and sub-oxic Tasman Sea sediments
P. Hesse (1994)
10.1111/J.1365-246X.2005.02735.X
Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA
Bangyeon Kim (2005)
10.7907/83R3-VB23.
The Identification and Interpretation of Microbial Biogeomagnetism
R. Kopp (2007)
10.1007/BF02522364
The separation of the influence of nutrients and climate on the varve time-series of baldeggersee, Switzerland
A. Lotter (2006)
10.1146/ANNUREV.EA.17.050189.001125
Magnetofossils, the Magnetization of Sediments, and the Evolution of Magnetite Biomineralization
S. R. Chang (1989)
10.1029/2006JB004657
Correction to “Low-temperature cooling behavior of single-domain magnetite: Forcing of the crystallographic axes and interactions”
A. Muxworthy (2006)
10.2138/am.2006.2227
Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography
T. Kasama (2006)
10.1016/0016-7037(87)90076-7
Dissolution and pyritization of magnetite in anoxie marine sediments
D. Canfield (1987)
10.1023/B:SGEG.0000020839.45304.6D
Characterization of Individual Rock Magnetic Components by Analysis of Remanence Curves, 1. Unmixing Natural Sediments
R. Egli (2004)
10.1128/AEM.52.4.751-757.1986
Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.
D. Lovley (1986)
10.1007/7171_039
Geobiology of Magnetotactic Bacteria
S. L. Simmons (2006)
10.1029/2006JB004298
Low‐temperature cooling behavior of single‐domain magnetite: Forcing of the crystallographic axes and interactions
A. Muxworthy (2005)
10.2113/0540095
Biologically Induced Mineralization by Bacteria
R. Frankel (2003)
10.1016/0304-8853(88)90093-5
Magnetic properties of magnetotactic bacteria
B. Moskowitz (1988)
10.1016/J.EPSL.2004.04.024
Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite
B. Weiss (2004)
10.1016/S0304-4203(99)00056-0
The cycling of particulate carbon, nitrogen, sulfur, and sulfur species (iron monosulfide, greigite, pyrite, and organic sulfur) in the water columns of Framvaren Fjord and the Black Sea
G. Cutter (1999)
10.1016/J.EARSCIREV.2007.08.001
The identification and biogeochemical interpretation of fossil magnetotactic bacteria
R. Kopp (2008)
10.1016/J.EPSL.2005.01.006
The detection of bacterial magnetite in recent sediments of Lake Chiemsee (southern Germany)
Y. Pan (2005)
10.1016/S0012-821X(99)00054-0
Possible evidence for dissimilatory bacterial magnetite dominating the magnetic properties of recent lake sediments
Zoe Gibbs-Eggar (1999)
10.1016/0012-821X(93)90245-5
Rock magnetic criteria for the detection of biogenic magnetite
B. Moskowitz (1993)
10.1575/1912/1011
New England salt pond data book
Anne E Giblin (1990)
10.1063/1.882466
Rock Magnetism: Fundamentals and Frontiers
D. Dunlop (1997)
10.1306/20B24466-170D-11D7-8645000102C1865D
Biogenic Magnetite: Authigenesis and Diagenesis With Changing Redox Conditions in Lake Greifen, Switzerland
T. B. Hawthorne (1991)
10.1126/SCIENCE.1122843
South-Seeking Magnetotactic Bacteria in the Northern Hemisphere
S. Simmons (2006)
10.1016/J.EPSL.2006.05.001
Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy
R. Kopp (2006)



This paper is referenced by
10.1002/2015JB012485
Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature
Liao Chang (2016)
10.1029/2010RG000336
Magnetic properties of sedimentary greigite (Fe3S4): An update
A. Roberts (2011)
10.1007/978-3-642-38262-8_5
Magnetic Properties of Uncultivated Magnetotactic Bacteria
W. Lin (2013)
10.1029/2011GC003633
Combined use of magnetometry and spectroscopy for identifying magnetofossils in sediments
Jessica Kind (2011)
10.1002/2014GC005624
Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks
W. Huang (2015)
10.1002/2013GC005034
Magnetotaxis and acquisition of detrital remanent magnetization by magnetotactic bacteria in natural sediment: First experimental results and theory
Xuegang Mao (2014)
10.1093/GJI/GGW488
Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin
F. Heinrich (2017)
10.1002/2016GC006446
Precessional control on ocean productivity in the Western Pacific Warm Pool for the last 400 kyr: Insight from biogenic magnetite
T. Yamazaki (2016)
10.1016/J.EPSL.2013.09.031
The fidelity of paleomagnetic records carried by magnetosome chains
G. Paterson (2013)
10.1029/2010GC003182
Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods.
I. Lascu (2010)
10.1016/j.msec.2013.05.046
Magnetic properties of Acidithiobacillus ferrooxidans.
L. Yan (2013)
10.1080/01490451.2011.565401
Environmental Factors Affect Magnetite Magnetosome Synthesis in Magnetospirillum magneticum AMB-1: Implications for Biologically Controlled Mineralization
J. Li (2012)
10.1029/2009JG001081
Changes in lake stratification and oxygen distribution inferred from two contrasting records of magnetotactic bacteria and diatoms
Ø. Paasche (2010)
10.1088/1478-3975/11/3/036006
Ferromagnetic resonance of intact cells and isolated crystals from cultured and uncultured magnetite-producing magnetotactic bacteria.
L. Abraçado (2014)
10.1016/j.tim.2013.07.005
Evolution of the bacterial organelle responsible for magnetotaxis.
C. Lefevre (2013)
10.1029/2012RG000393
Environmental magnetism: Principles and applications
Qingsong Liu (2012)
10.1099/ijs.0.037697-0
Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria).
T. J. Williams (2012)
10.1016/J.EPSL.2019.02.015
Dependence of bacterial magnetosome morphology on chemical conditions in deep-sea sediments
Toshitsugu Yamazaki (2016)
Magnetotactic bacteria and their application in environmental clean
Alok Sinha (2017)
10.1016/BS.MIM.2018.05.003
Methods to Study Magnetotactic Bacteria and Magnetosomes
L. Yan (2018)
10.1039/c7sc05164f
Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05164f
X. Zhou (2018)
Magnetotactic bacteria and their applications
M. Maleki (2020)
10.1144/SP371.3
Rock magnetism of remagnetized carbonate rocks: another look
M. Jackson (2012)
Complete Sequencing and Comparative Analysis of the Genomes of the First Magnetotactic Gammaproteobacteria Isolated in Pure Culture: Strains BW-2 and SS-5
Corey Geurink (2017)
10.1016/J.MARGEO.2017.02.008
Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea
Z. Duan (2017)
10.1093/gji/ggaa516
On the distribution of Verwey transition temperatures in natural magnetites
M. J. Jackson (2020)
10.1111/J.1365-246X.2009.04043.X
Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB‐1: transmission electron microscopy and magnetic observations
J. Li (2009)
Low-temperature magnetic properties of pelagic carbonates : Oxidation of biogenic magnetite and identi fi cation of magnetosome chains
Liao Chang (2013)
10.1016/J.MSER.2013.04.002
Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review
T. Prozorov (2013)
Method in estimating mass-specific magnetic susceptibility of strongly magnetic or low quantity substances
Dini Fitriani (2012)
10.1002/2014JB011213
Magnetic detection and characterization of biogenic magnetic minerals: A comparison of ferromagnetic resonance and first‐order reversal curve diagrams
Liao Chang (2014)
10.1017/9781139381222.009
Magnetotactic Bacteria and Magnetosomes
D. A. Bazylinski (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar