← Back to Search
THE INVOLVEMENT OF CYTOCHROMES IN THE UPTAKE OF FERRICHROME BY ESCHERICHIA COLI K-12
B. Eberspächer, V. Braun
Published 1980 · Chemistry
This paper references
10.1073/PNAS.70.5.1514
Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
E. Berger (1973)
10.1016/0304-4165(77)90043-5
Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa.
J. Ernst (1977)
10.1128/JB.129.2.815-820.1977
Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms.
H. Dailey (1977)
10.1021/BA-1977-0162
Bioinorganic Chemistry—II
K. Raymond (1977)
10.1016/B978-0-12-515250-1.50008-4
IRON TRANSPORT IN THE ENTERIC BACTERIA
H. Rosenberg (1974)
10.1016/0076-6879(67)10010-4
[7] Mitochondrial respiratory control and the polarographic measurement of ADP : O ratios
R. Estabrook (1967)
10.1128/JB.137.1.221-225.1979
Requirement for membrane potential in active transport of glutamine by Escherichia coli.
C. Plate (1979)
10.1111/J.1432-1033.1974.TB03569.X
Active transport of beta-galactosides by a mutant of Escherichia coli defective in heme synthesis.
K. A. Devor (1974)
10.1021/BA-1977-0162.CH001
Siderophores: Biochemical Ecology and Mechanism of Iron Transport in Enterobacteria
J. Neilands (1977)
10.1016/s0021-9258(19)41082-x
Energy-dependent accumulation of iron by isolated rat liver mitochondria. Requirement of reducing equivalents and evidence for a unidirectional flux of Fe(II) across the inner membrane.
T. Flatmark (1975)
10.1128/JB.127.3.1324-1330.1976
Ferric hydroxamate transport without subsequent iron utilization in Bacillus megaterium.
J. E. Arceneaux (1976)
10.1002/JSS.400050105
Functional organization of the outer membrane of escherichia coli: phage and colicin receptors as components of iron uptake systems.
V. Braun (1976)
10.1073/PNAS.76.3.1213
Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli.
J. Hong (1979)
10.1128/JB.111.1.287-289.1972
Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli.
B. Kanner (1972)
10.1016/0014-5793(75)80033-0
Iron transport in Mycobacterium smegmatis: Ferrimycobactin reductase (NAD(P)H:Ferrimycobactin oxidoreductase), the enzyme releasing iron from its carrier
K. A. Brown (1975)
This paper is referenced by
Production Is Involved in Iron Acquisition-Mediated Riboflavin Helicobacter pylori ribBA
D. Worst (1998)
10.1007/s00203-007-0309-7
Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization
T. Olczak (2007)
10.1128/JB.180.6.1473-1479.1998
Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition.
D. Worst (1998)
10.1128/IAI.72.11.6426-6432.2004
Identification of a Hemin Utilization Protein of Moraxella catarrhalis (HumA)
K. Furano (2004)
10.1099/13500872-145-1-197
The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals.
J. Lillard (1999)
10.1111/j.1365-2958.1994.tb00465.x
Transport of haemin across the cytoplasmic membrane through a haemin‐specific periplasmic binding‐protein‐dependent transport system in Yersinia enterocolitica
I. Stojiljković (1994)
10.1111/j.1365-2958.1996.tb02512.x
The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem‐protein complexes as iron sources
J. Hornung (1996)
10.1128/JB.185.5.1739-1744.2003
Hemin binding, functional expression, and complementation analysis of Pap 31 from Bartonella henselae.
R. Zimmermann (2003)
10.1128/JB.186.18.6159-6167.2004
Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum.
Susana Mouriño (2004)