Online citations, reference lists, and bibliographies.
← Back to Search

Plasmid-determined Resistance To Chromate In Pseudomonas Aeruginosa

C. Cervantes, H. Ohtake
Published 1988 · Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Resistance to chromate in five independent Pseudomonas aeruginosa clinical isolates was transferred by conjugation to P. aeruginosa strain PU21. All chromate-resistant transconjugants contained large plasmids that also conferred resistance to inorganic mercury. One of these plasmids, pUM505, increased the resistance to CrO42− and decreased the accumulation of intracellular 51CrO42− by the host cells as compared to the plasmidless strain PU21.
This paper references
Experiments in molecular genetics
J. Miller (1972)
10.3109/10408418709104455
The genetics and biochemistry of mercury resistance.
T. Foster (1987)
10.1099/00221287-113-2-229
Identification and Characterization of Large Plasmids in Rhizobium meliloti using Agarose Gel Electrophoresis
F. Casse (1979)
10.1016/0042-6822(65)90091-7
VARIATIONS IN RESTRICTION AND MODIFICATION OF BACTERIOPHAGE FOLLOWING INCREASE OF GROWTH TEMPERATURE OF PSEUDOMONAS AERUGINOSA.
B. Holloway (1965)
10.1128/JB.146.3.983-996.1981
Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus.
Sandra Silver (1981)
10.1128/JB.155.3.1105-1109.1983
Chromate resistance plasmid in Pseudomonas fluorescens.
L. Bopp (1983)
10.1016/c2009-0-07927-6
Environmental inorganic chemistry
K. Irgolic (1985)
10.1073/PNAS.79.20.6114
Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance.
Sandra Silver (1982)
10.1128/JB.88.1.151-157.1964
DECREASED PERMEABILITY AS THE MECHANISM OF ARSENITE RESISTANCE IN PSEUDOMONAS PSEUDOMALLEI.
M. Beppu (1964)
10.1128/JB.130.1.257-265.1977
Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis.
J. Efstathiou (1977)
Molecular Cloning: A Laboratory Manual
J. Sambrook (1983)
10.1128/JB.149.2.534-541.1982
Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa.
D. R. Durham (1982)
10.1128/JB.114.1.424-433.1973
Detection and characterization of plasmids in Pseudomonas aeruginosa strain PAO.
J. M. Pemberton (1973)
Resistance to metals by Pseudomonas aeruginosa clinical isolates.
C. Cervantes-Vega (1986)
10.1128/JB.169.8.3853-3856.1987
Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
H. Ohtake (1987)
10.1128/AAC.13.4.637
Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa
A. Summers (1978)
10.1016/0167-7799(85)90127-1
Bacterial resistance to toxic elements
A. Summers (1985)
10.1128/JB.147.2.313-319.1981
Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus.
Z. Tynecka (1981)
10.1128/JB.147.2.305-312.1981
Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus.
Z. Tynecka (1981)
10.1016/0006-291X(84)91023-4
A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli.
B. Rosen (1984)
10.1128/JB.132.1.186-196.1977
Mercury and organomercurial resistances determined by plasmids in Pseudomonas.
D. Clark (1977)
10.1099/00221287-131-4-939
Inducible plasmid-mediated copper resistance in Escherichia coli.
D. Rouch (1985)
10.1146/ANNUREV.MI.42.100188.003441
Plasmid-mediated heavy metal resistances.
S. Silver (1988)



This paper is referenced by
10.1128/AEM.67.3.1076-1084.2001
Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate
J. McLean (2001)
10.1007/0-387-21728-2_4
Chromium-microorganism interactions in soils: remediation implications.
S. P. B. Kamaludeen (2003)
10.1111/J.1574-6968.1990.TB13841.X
Chromate-resistance in a chromate-reducing strain of Enterobacter cloacae.
H. Ohtake (1990)
Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater
Agostinho A L Silva (2007)
10.1111/j.1365-2672.2009.04326.x
Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent
T. Verma (2009)
10.3923/PJBS.2005.1771.1777
Plasmid Mediated Chromate Resistance in Bacteria Isolated from Industrial Waste
S. Sultan (2005)
The mechanism of chromate reduction by Thermus scotoductus SA-01
D. Opperman (2008)
10.1128/JB.00289-08
The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide.
R. Branco (2008)
10.1007/s00253-020-10533-y
Successive use of microorganisms to remove chromium from wastewater
A. Elahi (2020)
Cloning andExpression ofPlasmid GenesEncoding Resistances to Chromate andCobalt inAlcaligenes eutrophus
Anke Nies (1989)
10.1007/s10534-011-9446-1
Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant
P. Morais (2011)
10.7717/peerj.6258
Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics
D. R. Learman (2019)
The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms
C. Viti (2001)
10.1007/BF00142007
Chromate tolerance in strains of Rhodosporidium toruloides modulated by thiosulfate and sulfur amino acids
M. Pepi (2004)
10.1007/BF01569948
Plasmids in tributyltin-resistant bacteria from fresh and estuarine waters
C. Miller (2005)
Pseudomonas aeruginosa Chromate Resistance Protein from Chromate Efflux by Means of the ChrA
A. Herrera Álvarez (1999)
10.1007/BF00871816
Hexavalent-chromium reduction by a chromate-resistantBacillus sp. strain
J. Campos (2004)
10.1111/j.1574-6968.2011.02473.x
Chromate-resistance genes in plasmids from antibiotic-resistant nosocomial enterobacterial isolates.
Gustavo G Caballero-Flores (2012)
10.1016/0147-619X(92)90007-W
Plasmid chromate resistance and chromate reduction.
C. Cervantes (1992)
10.1007/s002530100758
Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site
P. Pattanapipitpaisal (2001)
Integrating Mass Spectrometry Based Proteomics and Bioinformatics Technologies for the Molecular Level Characterization of Shewanella oneidensis to Chromate Exposure
M. R. Thompson (2007)
10.3109/10242429008992094
Bacterial Reduction of Hexavalent Chromium: Kinetic Aspects of Chromate Reduction by Enterobacter cloacae HO1
H. Ohtake (1990)
10.1186/1471-2180-9-199
High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes
K. Henne (2009)
10.1007/s00253-006-0439-x
Community structure and function in a H2-based membrane biofilm reactor capable of bioreduction of selenate and chromate
J. Chung (2006)
Bioremediation of chromate in alkaline sediment-water systems
Robert A. Whittleston (2011)
10.7717/peerj.1395
Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment
M. W. Henson (2015)
10.1556/AMICR.46.1999.1.3
Chromium-resistant soil actinomycetes: their tolerance to other metals and antibiotics.
M. Basu (1999)
10.1128/JB.172.3.1670-1672.1990
Membrane-associated chromate reductase activity from Enterobacter cloacae.
P. C. Wang (1990)
10.1590/S1517-83822013000100045
Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden
Satarupa Dey (2013)
Cloning, Nucleotide Sequence, andExpression oftheChromate Resistance Determinant ofPseudomonas aeruginosa Plasmid pUM5O5
S. Silver (1990)
10.1264/MICROBES1986.4.67
Effects of Nutrient-Poor and Anaerobic Conditions on Maintenance of R100-1 and RSF2124 Plasmids in Model Populations of Escherichia coli
P. Wang (1989)
10.1016/j.plasmid.2011.03.002
Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genes.
M. I. Ramírez-Díaz (2011)
See more
Semantic Scholar Logo Some data provided by SemanticScholar