Online citations, reference lists, and bibliographies.
← Back to Search

Polyphosphate Has A Central Role In The Rapid And Massive Accumulation Of Phosphorus In Extraradical Mycelium Of An Arbuscular Mycorrhizal Fungus.

N. Hijikata, M. Murase, C. Tani, R. Ohtomo, M. Osaki, T. Ezawa
Published 2010 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Title Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus Author(s) Hijikata, Nowaki; Murase, Masatake; Tani, Chiharu; Ohtomo, Ryo; Osaki, Mitsuru; Ezawa, Tatsuhiro Citation New Phytologist, 186(2), 285-289 https://doi.org/10.1111/j.1469-8137.2009.03168.x Issue Date 2010 Doc URL http://hdl.handle.net/2115/48540 Type article (author version) File Information Hijikata_et_al_HUS.pdf
This paper references
10.2136/SSSAJ1965.03615995002900060025X
Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil
F. Watanabe (1965)
10.1128/MMBR.30.4.772-794.1966
Inorganic polyphosphates in biology: structure, metabolism, and function.
F. Harold (1966)
10.1016/0003-2697(75)90585-0
An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine.
T. Ohnishi (1975)
10.1111/J.1469-8137.1978.TB02272.X
DETECTION AND ESTIMATION OF POLYPHOSPHATE IN VESICULAR‐ARBUSCULAR MYCORRHIZAS
J. Callow (1978)
10.1111/J.1469-8137.1980.TB04778.X
Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation
G. Cox (1980)
10.1111/J.1469-8137.1982.TB03294.X
THE ENZYMES OF POLYPHOSPHATE METABOLISM IN VESICULAR‐ARBUSCULAR MYCORRHIZAS
L. C. M. Capaccio (1982)
10.1111/J.1469-8137.1992.TB01077.X
External hyphae of vesicular arbuscular mycorrhizal fungi associated with trifolium subterraneum l. 1. spread of hyphae and phosphorus inflow into roots
I. Jakobsen (1992)
10.1111/J.1469-8137.1992.TB01800.X
External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.
I. Jakobsen (1992)
10.1038/378626A0
A phosphate transporter from the mycorrhizal fungus Glomus versiforme
M. Harrison (1995)
10.1128/AEM.65.12.5604-5606.1999
Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, Gigaspora margarita
M. Solaiman (1999)
10.1007/978-3-642-58444-2_1
Inorganic polyphosphate: a molecule of many functions.
A. Kornberg (1999)
10.1094/MPMI.2001.14.10.1140
A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment.
I. Maldonado-Mendoza (2001)
10.1038/35106601
A phosphate transporter expressed in arbuscule-containing cells in potato
C. Rausch (2001)
10.1046/J.1469-8137.2001.00040.X
Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi.
Ezawa Tatsuhiro (2001)
10.1046/J.1469-8137.2002.00412.X
Phospho-imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas.
J S Nielsen (2002)
10.1104/pp.009639
Phosphorus Effects on Metabolic Processes in Monoxenic Arbuscular Mycorrhiza Cultures1
P. Olsson (2002)
10.1111/J.1469-8137.2004.01048.X
Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo31 P NMR spectroscopy.
N. Viereck (2004)
10.1111/J.1469-8137.2004.01169.X
High functional diversity within species of arbuscular mycorrhizal fungi.
Lisa Munkvold (2004)
10.1023/A:1015510631271
The Content and Chain Length of Polyphosphates from Vacuoles of Saccharomyces cerevisiae VKM Y-1173
L. Trilisenko (2004)
10.1046/J.1469-8137.2003.00966.X
Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system.
T. Ezawa (2004)
10.1023/A:1020258325010
P metabolism and transport in AM fungi
T. Ezawa (2004)
10.1111/J.1469-8137.2004.01274.X
Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability.
H. Bücking (2005)
10.1093/PCP/PCJ069
Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis.
Daisuke Maeda (2006)
10.1073/pnas.0608136104
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis
Hélène Javot (2007)
10.1016/b978-0-12-652840-4.x5000-1
Mycorrhizal Symbiosis
O. Alizadeh (2011)



This paper is referenced by
10.1016/S1002-0160(20)60091-1
Advances in fungal-assisted phytoremediation of heavy metals: A review
M. Khalid (2021)
10.1007/s00203-021-02320-8
Microbiome for sustainable agriculture: a review with special reference to the corn production system.
S. L. Jat (2021)
10.1016/B978-0-12-822122-8.00009-1
Potential effect of microbial biostimulants in sustainable vegetable production
M. Seymen (2021)
10.4081/JBR.2021.8883
Growth, yield, nutrients uptake and anatomical properties of direct seeding and transplanting maize (Zea mays L.) plants under arbuscular mycorrhizal fungi and water stress
S. Rezazadeh (2021)
10.3389/fpls.2021.725939
Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas
C. Nguyen (2021)
10.3389/ffunb.2021.735299
Common Mycorrhizae Network: A Review of the Theories and Mechanisms Behind Underground Interactions
A. F. Figueiredo (2021)
10.1007/978-981-15-6125-2
Rhizosphere Biology: Interactions Between Microbes and Plants
A. Sharma (2021)
10.3389/fpls.2020.618222
Species-Specific Responses of Root Morphology of Three Co-existing Tree Species to Nutrient Patches Reflect Their Root Foraging Strategies
Zhenya Yang (2020)
10.1007/978-981-15-6125-2_14
Molecular Mechanisms of Plant–Microbe Interactions in the Rhizosphere as Targets for Improving Plant Productivity
V. Balasubramanian (2020)
10.1007/978-3-030-45971-0_3
The Role of Arbuscular Mycorrhizal Fungal Community in Paddy Soil
S. B. Novair (2020)
10.1007/978-981-15-6895-4_9
Biotechnological Interventions for Arbuscular Mycorrhiza Fungi (AMF) Based Biofertilizer: Technological Perspectives
Punith Kumar (2020)
10.1007/978-3-030-45971-0
Agriculturally Important Fungi for Sustainable Agriculture: Volume 1: Perspective for Diversity and Crop Productivity
S. Mishra (2020)
10.1093/femsec/fiaa222
Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum.
M. Tsiknia (2020)
10.14720/aas.2020.116.2.1322
Effect of soil conditioner enriched with biofertilizers to improve soil fer- tility and maize (Zea mays L.) growth on andisols Sinabung area
Mariani Sembiring (2020)
10.1007/978-981-15-6895-4
Microbial Enzymes and Biotechniques: Interdisciplinary Perspectives
Pratyoosh Shukla (2020)
10.3389/fpls.2020.00938
Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae
E. Sanz-Luque (2020)
10.1007/978-981-13-7264-3_4
Arbuscular Mycorrhizal Fungi and Nutrient Cycling in Cropping Systems
S. Saia (2019)
10.3390/plants8120579
Improved Drought Tolerance by AMF Inoculation in Maize (Zea mays) Involves Physiological and Biochemical Implications
Naheeda Begum (2019)
Regulation of copper transporters in the arbuscular mycorrhizal symbiosis: effect on host plant copper homeostasis and development
Gómez Gallego (2019)
10.1007/978-3-030-10480-1_5
Mycorrhizal Fungi: Biodiversity, Ecological Significance, and Industrial Applications
D. Pandey (2019)
10.1093/pcp/pcz122
Structure-specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi.
H. Kameoka (2019)
10.1101/cshperspect.a034603
Mechanisms and Impact of Symbiotic Phosphate Acquisition.
Chai Hao Chiu (2019)
10.15666/aeer/1706_137131372
ARBUSCULAR MYCORRHIZAL SYMBIOSIS ALLEVIATES DROUGHT STRESS IMPOSED ON WHEAT PLANTS (TRITICUM AESTIVUM L.)
A. Metwally (2019)
1 arbuscular mycorrhizal fungi 2 3 Running title : Structure-specific transcriptome of AMF 4 5
Hiromu Kameoka (2019)
10.1111/pce.13626
Priming and filtering of anti-herbivore defenses among Nicotiana attenuata plants connected by mycorrhizal networks.
Yuanyuan Song (2019)
10.1111/nph.16129
Identity and functions of inorganic and inositol polyphosphates in plants
L. Lorenzo-Orts (2019)
10.21161/MJM.144187
Isolation and characterisation of Arbuscular mycorrhizal (AM) fungi spores from selected plant roots and their rhizosphere soil environment
S. C. Toh (2018)
10.1111/nph.15230
Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis.
L. Lanfranco (2018)
Investigating variation in associations with belowground micro-organisms of historic and current white clover germplasm
John Ramana (2018)
10.1101/491811
Structure-specific regulation of nutrient absorption, metabolism and transfer in arbuscular mycorrhizal fungi
H. Kameoka (2018)
10.1111/nph.15187
How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.
T. Ezawa (2018)
10.1111/pce.12847
The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study.
M. Torres-Aquino (2017)
See more
Semantic Scholar Logo Some data provided by SemanticScholar