Online citations, reference lists, and bibliographies.
← Back to Search

Wire-channel And Wrap-around-gate Metal–oxide–semiconductor Field-effect Transistors With A Significant Reduction Of Short Channel Effects

E. Leobandung, J. Gu, Lingjie J. Guo, S. Chou
Published 1997 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Metal–oxide–semiconductor field-effect transistors (MOSFETs) with a wire-channel and wrap-around-gate (WW) structure were fabricated using electron beam lithography and reactive ion etching. The smallest devices have a 35 nm channel width, a 50 nm channel thickness, and a 70 nm channel length. Measurements showed that as the channel width of WW MOSFETs decreased from 75 to 35 nm short channel effects were significantly reduced: the subthreshold slope decreased from 356 to 80 mV/dec and the drain-induced barrier lowering decreased from 988 to 129 mV. Furthermore, the reduction of channel width increases the drive current per unit channel width. A multichannel WW MOSFET with a high current driving capability is discussed.
This paper references



This paper is referenced by
10.1201/9781420034141-16
Device architectures for the nano-CMOS era
S. Deleonibus (2003)
10.1109/ICECE.2008.4769213
Electrical characteristics of coaxial nanowire FETs based on analytical approach
A. Kargar (2008)
10.1007/S12648-011-0049-Z
Analytical modeling of electrical characteristics of coaxial nanowire FETs
A. Kargar (2011)
10.1146/ANNUREV.MATSCI.30.1.681
Device Innovation and Material Challenges at the Limits of CMOS Technology
P. Solomon (2000)
10.1016/J.PHYSE.2007.09.033
Unipolar rectifying silicon nanowires—TCAD study
K. Fobelets (2008)
10.1007/978-90-481-2309-4_26
Design and Assembly of High-Aspect-Ratio Silica-Encapsulated Nanostructures for Nanoelectronics Applications
N. Kovtyukhova (2009)
10.5075/EPFL-THESIS-3722
Ultra-thin nanograin polysilicon devices for hybrid CMOS-NANO integrated circuits
S. Ecoffey (2007)
10.1143/JJAP.50.105002
Growth of Narrow and Straight Germanium Nanowires by Vapor–Liquid–Solid Chemical Vapor Deposition
Marolop Simanullang (2011)
10.1143/JJAP.51.034301
Drain Current Characteristics of Ferroelectric Gate-All-Around Si Nanowire Transistors Based on Drift/Diffusion Transport Theory
Masakazu Ibata (2012)
10.1109/TED.2005.864392
Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (bulk FinFETs)
Tai-Su Park (2006)
10.1109/SOI.2005.1563549
Device design considerations for nanoscale double and triple gate FinFETs
A. Kranti (2005)
Nanoscale CMOS - Proceedings of the IEEE
H. P. Wong (1999)
10.1088/0953-8984/17/29/R01
Nonlinear properties of ballistic nanoelectronic devices
L. Worschech (2005)
10.1063/1.3552593
Quantum-confinement effect on holes in silicon nanowires: Relationship between wave function and band structure
N. Morioka (2011)
10.1088/0268-1242/21/4/002
Performance assessment of nanoscale double- and triple-gate FinFETs
A. Kranti (2006)
10.1088/1361-6528/aaf1e5
Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors.
J. G. Gluschke (2019)
10.5573/JSTS.2016.16.2.185
Impact of Trap Position on Random Telegraph Noise in a 70-Å Nanowire Field-Effect Transistor
Hyunseul Lee (2016)
10.1063/1.3555468
Gate capacitance of cylindrical nanowires with elliptical cross-sections
A. Majumdar (2011)
10.1109/5.752515
Nanoscale CMOS
H. P. Wong (1999)
Fabrication of wrap-around gate nanostructures from electrochemical deposition
Jae-Hyun Ahn (2009)
10.1088/0268-1242/22/5/005
Comparative analysis of nanoscale MOS device architectures for RF applications
A. Kranti (2007)
10.1147/rd.462.0133
Beyond the conventional transistor
H. P. Wong (2002)
10.1109/MCD.2003.1175108
Two gates are better than one [double-gate MOSFET process]
P. Solomon (2003)
10.1016/S0026-2714(00)00196-7
Alternative CMOS or alternative to CMOS?
S. Deleonibus (2001)
10.1109/LED.2006.873381
High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices
N. Singh (2006)
Ein Beitrag zur Anwendung von InAs Nanodraht-Feldeffekttransistoren in hochfrequenten Schaltungen
K. Blekker (2017)
10.1063/1.4952715
Vertical architecture for enhancement mode power transistors based on GaN nanowires
Feng Yu (2016)
10.1109/TNS.2013.2280247
Intrinsic Tolerance to Total Ionizing Dose Radiation in Gate-All-Around MOSFETs
E. Comfort (2013)
10.1007/S10825-017-0982-Y
SET analysis of silicon nanotube FET
G. Jayakumar (2017)
10.1007/978-3-540-74559-4_8
Transistor Scaling to the Limit
T. J. Liu (2009)
10.1063/1.4894091
Towards reproducible, scalable lateral molecular electronic devices
Colm Durkan (2014)
10.1109/16.981218
Design and fabrication of 50-nm thin-body p-MOSFETs with a SiGe heterostructure channel
Yee-Chia Yeo (2002)
See more
Semantic Scholar Logo Some data provided by SemanticScholar