Online citations, reference lists, and bibliographies.
← Back to Search

Electron Transport In Molecular Wire Junctions

A. Nitzan, M. Ratner
Published 2003 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Molecular conductance junctions are structures in which single molecules or small groups of molecules conduct electrical current between two electrodes. In such junctions, the connection between the molecule and the electrodes greatly affects the current-voltage characteristics. Despite several experimental and theoretical advances, including the understanding of simple systems, there is still limited correspondence between experimental and theoretical studies of these systems.
This paper references
Chem
A Nitzan
10.1063/1.1429236
Analysis of a dinitro-based molecular device
J. M. Seminario (2002)
J. Chem. Phys
V Mujica (1996)
But scanning probe measurements can be very precise
(1997)
10.1021/JA0268332
Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function.
Jeremy M. Beebe (2002)
Solid State Phys
G Cuniberti (2002)
10.1038/nature00790
Kondo resonance in a single-molecule transistor
W. Liang (2002)
10.1016/S0301-0104(02)00445-7
A versatile experimental approach for understanding electron transport through organic materials
M. A. Rampi (2002)
10.1088/0957-4484/11/2/306
Silicon-based molecular nanotechnology
M. Hersam (2000)
10.1021/JP0037697
Semiclassical Theory for Tunneling of Electrons Interacting with Media
A. Burin (2001)
10.1016/S0921-4526(02)00969-9
Mesoscopic thermal transport and energy dissipation in carbon nanotubes
P. Kim (2002)
10.1021/JA027810Q
Controlling the conductance of atomically thin metal wires with electrochemical potential.
B. Xu (2002)
Phys. Rev. Lett
B N J Persson (1987)
10.1063/1.1391253
Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation
Yongqiang Xue (2001)
J. Phys. Chem. B Nature
A Nitzan (2000)
10.1039/B105279A
A quantum chemistry approach for current–voltage characterization of molecular junctions
C. Wang (2001)
J. Phys. Chem. A
A L Burin (2001)
Phys. Rev. Lett
E G Emberly (2001)
10.1063/1.480696
Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires
L. E. Hall (2000)
10.1515/9783111576855-015
J
Seguin Hen (1824)
10.1016/S0022-0728(00)00305-3
Mercury–mercury tunneling junctions: Part II. Structure and stability of symmetric alkanethiolate bilayers and their effect on the rate of electron tunneling
K. Slowinski (2000)
J. Chem. Phys
L E Hall (2000)
Chem
J. M. Beebe (1126)
Superlat. Microstr
S Hong (2000)
J. Electroanal. Chem
K Slowinski (2000)
10.1063/1.882658
Carbon nanotubes as molecular quantum wires
C. Dekker (1999)
Phys. Rev. B
H Ness (2001)
Chem. Phys
S Alavi (2002)
Anal. Chem
A O Solak (2003)
10.1006/SPMI.2000.0916
Molecular conductance spectroscopy of conjugated, phenyl-based molecules on Au(111): the effect of end groups on molecular conduction
Seunghun Hong (2000)
10.1007/s100190100124
Nanotechnology
J. Gilman (2001)
10.1063/1.882746
Lecture in Lyons: Science and Freedom
A. Sakharov (1999)
Phys. Rev. B
B Larade (2001)
Phys. Rev. Lett
M Diventra (2002)
J. Am. Chem. Soc
A Troisi (2002)
10.1103/PHYSREVLETT.84.979
First-principles calculation of transport properties of a molecular device
Di Ventra M (2000)
J. Chem. Phys
Y Xue (2001)
10.1146/ANNUREV.PHYSCHEM.52.1.681
Electron transmission through molecules and molecular interfaces.
A. Nitzan (2001)
The common usage for HOMO and LUMO is oversimplified ; the ionization and affinity levels are actually meant
Surf. Sci
S N Patitsas (2000)
10.1016/S0301-0104(02)00374-9
Surprising electronic–magnetic properties of close-packed organized organic layers
Z. Vager (2002)
10.1126/SCIENCE.1064354
Reproducible Measurement of Single-Molecule Conductivity
X. D. Cui (2001)
10.1103/PHYSREVLETT.89.086802
Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory.
J. G. Kushmerick (2002)
Chem. Phys
M A Rampi (2002)
Phys. Rev. B
L G Caron (1986)
10.1021/JA028281T
Molecular rectification through electric field induced conformational changes.
A. Troisi (2002)
10.1063/1.471396
Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification
V. Mujica (1996)
10.1038/35046000
Electronics using hybrid-molecular and mono-molecular devices
C. Joachim (2000)
Phys. Rev. Lett
J G Kushmerick (2002)
Phys. Chem. Chem. Phys
C K Wang (2001)
10.1103/RevModPhys.72.895
The Statistical theory of quantum dots
Y. Alhassid (2000)
J. Chem. Phys
W D Tian (1998)
10.1063/1.476841
CONDUCTANCE SPECTRA OF MOLECULAR WIRES
W. Tian (1998)
10.1103/PhysRevLett.88.256803
Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels.
J. Heurich (2002)
Ann. N.Y. Acad. Sci
M A Reed (1998)
10.1103/PHYSREVLETT.59.339
Inelastic electron tunneling from a metal tip: The contribution from resonant processes.
Persson (1987)
Phys. Rev. B
J Tersoff (1985)
J. Am. Chem. Soc
B Xu (2002)
Phys. Rev. B
C Kergueris (1999)
Chem
A. Troisi (1452)
10.1038/35085542
Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling
B. Giese (2001)
10.1103/PHYSREVLETT.87.269701
Comment on "First-principles calculation of transport properties of a molecular device".
Eldon G. Emberly (2001)
10.1063/1.1522406
On the electrostatic potential profile in biased molecular wires
A. Nitzan (2002)
10.1021/JP003884H
A Relationship between Electron-Transfer Rates and Molecular Conduction †
A. Nitzan (2001)
Chem. Phys
A W Ghosh (2002)
10.1016/S0301-0104(02)00627-4
Charge transfer in molecular conductors—oxidation or reduction?
A. Ghosh (2002)
10.1103/PhysRevB.59.12505
Electron transport through a metal-molecule-metal junction
C. Kergueris (1999)
Phys. Today
C Dekker (1999)
In ordinary STM measurements, the large spatial gap between the tip and the surface requires that the voltage drop occurs there, so there is no lineup or voltage problem
A Nitzan (2002)
10.1021/JP0007235
Tunneling Time for Electron Transfer Reactions
Abraham Nitzan and (2000)
10.1103/PhysRevB.63.125422
Coherent electron-phonon coupling and polaronlike transport in molecular wires
H. Ness (2001)
Rev. Mod. Phys
Y Alhassid (2000)
Annu. Rev. Phys. Chem
A Nitzan (2001)
10.1016/S0301-0104(02)00343-9
Electronic transport through single conjugated molecules
H. Weber (2002)
Ann. N.Y. Acad. Sci
A Aviram (2002)
10.1038/nature00791
Coulomb blockade and the Kondo effect in single-atom transistors
J. Park (2002)
10.1111/j.1749-6632.1998.tb09868.x
The Electrical Measurement of Molecular Junctions
M. Reed (1998)
10.1126/SCIENCE.278.5336.252
Conductance of a Molecular Junction
M. Reed (1997)
10.1016/S0039-6028(00)00468-4
Current-induced organic molecule–silicon bond breaking: consequences for molecular devices
S. N. Patitsas (2000)
J. Appl. Phys
B Mann (1971)
10.1103/PHYSREVB.33.3027
Electron transmission in the energy gap of thin films of argon, nitrogen, and n-hexane.
Caron (1986)
10.1007/978-94-011-2024-1
Atomic and nanometer-scale modification of materials : fundamentals and applications
P. Avouris (1993)
Phys. Rev. Lett
J Heurich (2002)
10.1103/PhysRevB.65.165401
Density-functional method for nonequilibrium electron transport
M. Brandbyge (2002)
10.1038/386474A0
Individual single-wall carbon nanotubes as quantum wires
S. Tans (1997)
Res. Dev
R Landauer (1957)
Adv. Chem. Phys
M Bixon (1999)
63. Special issue on Processes in Molecular Wires
(2002)
J. Am. Chem. Soc
J M Beebe (2002)
Chem. Phys
H B Weber (2002)
Chem
B. Xu (1356)
10.1063/1.1659785
Tunneling through Fatty Acid Salt Monolayers
B. Mann (1971)
10.1103/PHYSREVB.64.075420
Conductance, I − V curves, and negative differential resistance of carbon atomic wires
B. Larade (2001)
J. Chem. Phys
J M Seminario (2002)
Chem. Phys
Z Vager (2002)
Avouris in Atomic and Nanometer Scale Modification of Materials: Fundamentals and Applications
R E Walkup (1993)
Phys. Rev. B
M Brandbyge (2002)
10.1016/S0301-0104(02)00403-2
Processes in molecular wires: Preface
P. Hänggi (2002)
10.1103/PHYSREVLETT.78.4410
Single-Molecule Dissociation by Tunneling Electrons
B. Stipe (1997)
Phys. Rev. Lett
M Diventra (2000)
J. Phys. Chem. A
A Nitzan (2001)
10.1016/S0301-0104(02)00567-0
Current-triggered vibrational excitation in single-molecule transistors
S. Alavi (2002)



This paper is referenced by
10.1021/nn202206e
Nonlinear charge transport in redox molecular junctions: a Marcus perspective.
A. Migliore (2011)
10.1021/ja9102327
Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory.
Ali Coskun (2010)
10.1088/0953-4075/42/4/044013
On the relation between steady-state currents and resonance states in molecular junctions
M. C. Toroker (2009)
10.1103/PhysRevB.102.075405
Current vortices in aromatic carbon molecules
T. Stegmann (2020)
10.1021/nn800475a
Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level.
K. Liu (2008)
10.1103/PHYSREVB.73.075211
Many-body theory of current-induced fluorescence in molecular junctions
Upendra Harbola (2006)
Theoretical Studies of Photoinduced Electron Transfer in
Walter R. Duncan (2007)
10.1002/QUA.21502
Correlated, ab initio electron propagators in the study of molecular wires: Application to a single molecular bridge placed between two model leads
M. Sterling (2007)
10.1063/1.3000105
Molecular orientation and ordering in CoPc and FePc thin films grown on Au(001)-5×20
O. Molodtsova (2008)
10.1103/PhysRevB.78.165109
Density-functional theory of nonequilibrium tunneling
P. Hyldgaard (2008)
10.1021/ct800507m
Excitation Energies in Time-Dependent (Current-) Density-Functional Theory: A Simple Perspective.
C. Ullrich (2009)
10.1016/J.ELECTACTA.2009.04.034
Single molecular switch based on thiol tethered iron(II)clathrochelate on gold
S. Viswanathan (2009)
Assembling large numbers of molecules into nano-scaled objects to form new devices and circuit architectures is discussed in this paper as a means for realizing a new paradigm for information processing.
Molecular Nanoelectronics (2010)
10.1088/0031-8949/81/05/055702
Electron transport through a quantum interferometer: a theoretical study
Santanu K. Maiti (2010)
10.1007/S10904-010-9373-6
Recent Progress in the Synthesis and Applications of Some Ferrocene Derivatives and Ferrocene-Based Polymers
W. Amer (2010)
10.1088/0031-8949/84/05/055501
Collective dynamics of the electron gas in an anharmonic quantum well
S. Mao (2011)
10.1126/science.1138668
Ballistic Electron Microscopy of Individual Molecules
A. Bannani (2007)
10.1103/PHYSREVB.76.235422
Real-space pseudopotential calculations of spin-dependent electron transport in magnetic molecular junctions
L. Kong (2007)
10.1002/ANIE.200704147
Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy.
D. Flannigan (2007)
10.1016/j.jmmm.2007.12.020
Current-induced torques in magnetic metals: Beyond spin-transfer
P. Haney (2008)
10.1021/JP800116J
Evolution of the Electronic Structure at the Interface between a Thin Film of Halogenated Phthalocyanine and the Ag(111) Surface
L. Giovanelli (2008)
10.1088/0953-8984/20/38/383201
Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry.
O. Hod (2008)
10.1021/jp502065c
Electron transport properties of diarylethene photoswitches by a simplified NEGF-DFT approach.
V. Barone (2014)
10.1038/nnano.2015.97
Single-molecule diodes with high rectification ratios through environmental control.
B. Capozzi (2015)
10.1021/ja1040946
Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence.
T. Hines (2010)
10.1201/B19368-8
Currents From Pulse-Driven Leads in Molecular Junctions: A Time-Independent Scattering Formulation
Maayan Kuperman (2015)
nphys620 Krausz Progress.indd
P. B. CORKUM (2007)
10.1073/PNAS.0408474102
A fullerene molecular tip can detect localized and rectified electron tunneling within a single fullerene-porphyrin pair.
T. Nishino (2005)
10.1063/1.4773436
Conductive probe AFM study of Pt-thiol and Au-thiol contacts in metal-molecule-metal systems.
C. M. Kim (2013)
10.1002/jcc.20865
Carbon nanotube, graphene, nanowire, and molecule‐based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory
W. Y. Kim (2008)
10.1007/128_2011_238
Charge transport in single molecular junctions at the solid/liquid interface.
C. Li (2012)
10.1063/1.3258350
Negative differential resistance in conductive polymer and semiconducting quantum dot nanocomposite systems
S. Biswas (2009)
See more
Semantic Scholar Logo Some data provided by SemanticScholar