Online citations, reference lists, and bibliographies.
← Back to Search

A [2]Catenane-Based Solid State Electronically Reconfigurable Switch

C. Collier, Gunter Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J. Stoddart, J. Heath
Published 2000 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
A solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode. The device exhibits hysteretic (bistable) current/voltage characteristics. The switch is opened at +2 volts, closed at −2 volts, and read at ∼0.1 volt and may be recycled many times under ambient conditions. A mechanochemical mechanism for the action of the switch is presented and shown to be consistent with temperature-dependent measurements of the device operation.
This paper references
10.1002/ANIE.199720681
Anion‐Assisted Self‐Assembly
M. Fyfe (1997)
10.1002/(SICI)1099-0690(199905)1999:5<985::AID-EJOC985>3.0.CO;2-O
Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene
M. Asakawa (1999)
10.1126/SCIENCE.280.5370.1716
A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology
J. Heath (1998)
10.1021/LA990791M
Introduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials
C. L. Brown (2000)
10.1021/JO991781T
Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs
Balzani (2000)
10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO;2-P
A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit.
M. Asakawa (1998)
10.1039/A903888D
All about (N-hexadecylquinolin-4-ium-1-yl)methylidenetricyanoquinodimethanide, a unimolecular rectifier of electrical current
R. Metzger (2000)
10.1126/SCIENCE.286.5444.1550
Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device.
Chen (1999)
10.1109/JQE.1979.1069942
The physics of semiconductor devices
H. Grubin (1979)
10.1021/JA993890V
Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions
E. W. Wong (2000)
10.1021/LA00030A019
Molecular organization via ionic interactions at interfaces. 1. Monolayers and LB films of cyclic bisbipyridinium tetracations and dimyristoylphosphatidic acid
R. Ahuja (1993)
10.1126/SCIENCE.285.5426.391
Electronically configurable molecular-based logic gates
Collier (1999)



This paper is referenced by
10.1002/1099-0690(200103)2001:5<957::AID-EJOC957>3.0.CO;2-N
Azopyridinium-containing [2]pseudorotaxanes and hydrazopyridinium-containing [2]catenanes
P. Ashton (2001)
10.1039/B203047K
Room temperature negative differential resistance in molecular nanowires
I. Kratochvílová (2002)
10.1201/9781420007848.CH5
Molecular Electronic Computing Architectures
J. Tour (2002)
10.1088/0953-8984/15/14/201
Current-driven dynamics in molecular-scale devices
T. Seideman (2003)
10.1007/1-4020-8068-9_7
Law of large numbers system design
A. DeHon (2004)
10.1002/ADMA.200305702
Ferroelectric Lithography of Multicomponent Nanostructures
S. Kalinin (2004)
10.1039/B407108E
A circular tris[2]catenane from molecular 'figure-of-eight'.
A. Hori (2004)
10.1002/ANGE.200602166
Vierfache [2]Rotaxane von Calix[4]arenen durch Ringschluss
O. Molokanova (2006)
10.1002/ANGE.200504313
Synthetische molekulare Motoren und mechanische Maschinen
Euan R Kay (2007)
10.1002/chem.200801590
Pi-stacking enhanced dynamic and redox-switchable self-assembly of donor-acceptor metallo-[2]catenanes from diimide derivatives and crown ethers.
Gayane Koshkakaryan (2008)
10.1002/ADFM.200901692
Improving the ON/OFF Ratio and Reversibility of Recording by Rational Structural Arrangement of Donor-Acceptor Molecules
Y. Ma (2010)
10.1016/J.COMMATSCI.2010.02.021
Calculation of complex band structure for plane-wave nonlocal pseudopotential Hamiltonian
M. G. Vergniory (2010)
Molecular Electronics : Insight from Ab-Initio Transport Simulations
J. Prasongkit (2011)
10.1021/nn100234x
NiO resistive random access memory nanocapacitor array on graphene.
J. Son (2010)
10.1038/35040687
Nanotechnology: Flipping a molecular switch
D. Feldheim (2000)
10.1109/TC.2008.130
Limit on the Addressability of Fault-Tolerant Nanowire Decoders
Y. M. Chee (2009)
10.1557/PROC-1154-B06-07
Formation and Electrical Interfacing of Nanocrystal-Molecule Nanostructures
Claire Barrett (2009)
10.1002/CNMA.201500064
Template‐Guided Ionic Self‐Assembled Molecular Materials and Thin Films with Nanoscopic Order
Marco Santella (2015)
10.1039/c7dt04792d
Studies towards the synthesis of Pd(ii)-containing [2] and [3]catenanes in aqueous media.
E. M. López-Vidal (2018)
10.1142/S1793292015300029
Advantages of Prefabricated Tunnel Junction-Based Molecular Spintronics Devices
P. Tyagi (2015)
10.1039/c2cc34427k
Rapid thermally assisted donor-acceptor catenation.
A. Fahrenbach (2012)
10.1016/J.TETLET.2013.08.039
Regio- and stereoselective synthesis of spiro-pyrrolidine/pyrrolizidine/thiazolidine-grafted macrocycles through intramolecular 1,3-dipolar cycloaddition reaction
S. Purushothaman (2013)
10.1021/MA401485B
An Acid–Base Controllable Hierarchical Nanostructure from a NIR-Absorbing Conjugated Polyrotaxane-Based Optical Molecular Switch
M. R. Raju (2013)
10.1002/anie.201104099
Foldamer-tuned switching kinetics and metastability of [2]rotaxanes.
Kang-Da Zhang (2011)
10.1002/asia.201100560
Metal-ion-promoted electron transfer between tetrathiafulvalene and quinone units within a calix[4]arene framework and tuning through coordination of the neighboring crown ether with a sodium cation.
F. Sun (2012)
10.1002/chem.201002933
Electrostatic barriers in rotaxanes and pseudorotaxanes.
Mohamad Hmadeh (2011)
10.1002/9783527632817.CH12
12. Molecular Machines Based on Rotaxanes and Catenanes
V. Balzani (2010)
10.1073/pnas.0705847104
Efficient production of [n]rotaxanes by using template-directed clipping reactions
J. Wu (2007)
Fault Tolerant Nanoscale Microprocessor Design on Semiconductor Nanowire Grids
T. Wang (2009)
10.1002/smll.201903489
Programmable DNA Nanoindicator-Based Platform for Large-Scale Square Root Logic Biocomputing.
Chunyang Zhou (2019)
10.1039/c9cs00309f
Nanoparticles' interactions with vasculature in diseases.
J. K. Tee (2019)
10.1111/j.1749-6632.2002.tb03026.x
Molecular Wires, Switches, and Memories
J. Chen (2002)
See more
Semantic Scholar Logo Some data provided by SemanticScholar