Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Electrode-Cellular Interface

G. Wallace, S. Moulton, G. Clark
Published 2009 · Materials Science, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Electrode materials that facilitate interaction with living cells are crucial for the development of next-generation bionic devices.
This paper references
10.1016/J.JCONREL.2006.09.004
Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole.
B. Thompson (2006)
Wallace, G
J. S. Czarnecki (2009)
10.1146/annurev.bioeng.10.061807.160518
Neural stimulation and recording electrodes.
S. Cogan (2008)
10.1016/J.BIOS.2006.08.011
Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.
A. Widge (2007)
10.1021/NL061241T
Neural stimulation with a carbon nanotube microelectrode array.
K. Wang (2006)
10.1002/(SICI)1521-4109(199904)11:4<215::AID-ELAN215>3.0.CO;2-#
Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies
T. Campbell (1999)
10.1088/1741-2560/1/4/005
An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
Carrie Newbold (2004)
10.1016/J.BIOMATERIALS.2006.11.026
Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells.
S. Richardson-Burns (2007)
10.1016/S0956-5663(01)00312-8
Application of conducting polymers to biosensors.
M. Gerard (2002)
10.1002/ADMA.200800757
Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper
H. Chen (2008)
10.1002/JBM.10015
Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation.
P. Supronowicz (2002)
10.1109/TNSRE.2007.903958
Retinal Neurostimulator for a Multifocal Vision Prosthesis
Y. Wong (2007)
10.1021/nl802859a
Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein.
N. W. Kam (2009)
10.1016/0168-3659(94)90260-7
Factors influencing electrochemical release of 2,6-anthraquinone disulphonic acid from polypyrrole
Y. Lin (1994)
10.1073/PNAS.94.17.8948
Stimulation of neurite outgrowth using an electrically conducting polymer.
C. Schmidt (1997)
10.3171/JNS.2000.93.1.0140
Long-term deep brain stimulation in a patient with essential tremor: clinical response and postmortem correlation with stimulator termination sites in ventral thalamus. Case report.
J. Boockvar (2000)
10.1089/tea.2007.0169
A novel approach to control growth, orientation, and shape of human osteoblasts.
Jarema S. Czarnecki (2008)
10.1016/0968-5677(94)90013-2
Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’
A. J. Hodgson (1994)
10.1002/JBM.A.20065
Evaluation of biocompatibility of polypyrrole in vitro and in vivo.
Xioadong Wang (2004)



This paper is referenced by
10.1039/C3TA13382F
DNA hydrogel templated carbon nanotube and polyaniline assembly and its applications for electrochemical energy storage devices
Jaehyun Hur (2013)
10.1016/j.actbio.2012.03.023
Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode.
D. Bax (2012)
10.1002/smll.201101491
Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations cytocompatible, inkjet-printed polypyrrole films.
Bo Weng (2011)
10.1021/nn2017815
Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode.
S. Park (2011)
10.1016/j.bios.2010.07.022
Biocompatible molecularly imprinted polymers for the voltage regulated uptake and release of L-glutamate in neutral pH solutions.
E. von Hauff (2010)
10.1088/0957-4484/24/50/505301
Nanoscale platinum printing on insulating substrates.
C. O’Connell (2013)
10.1016/J.SNB.2011.05.062
Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes
Meng Deng (2011)
10.1088/1742-6596/434/1/012023
Electrode-skin contact impedance: In vivo measurements on an ovine model
D. Nguyen (2013)
10.1038/nphoton.2013.34
A polymer optoelectronic interface restores light sensitivity in blind rat retinas
D. Ghezzi (2013)
10.1039/C5TB02125A
Conductive surfaces with dynamic switching in response to temperature and salt.
A. J. Hackett (2015)
10.1002/ADFM.201700587
Organic Electrodes and Communications with Excitable Cells
A. Harris (2018)
10.1002/cphc.201800095
Electrochemical Responsive Superhydrophilic Surfaces of Polythiophene Derivatives towards Cell Capture and Release.
Yuwei Hao (2018)
10.1039/C7PY00919D
Thermoresponsive laterally-branched polythiophene phenylene derivative as water-soluble temperature sensor
E. Chan (2017)
10.1039/c2nr30758h
Nanobionics: the impact of nanotechnology on implantable medical bionic devices.
G. Wallace (2012)
10.1016/j.bbagen.2012.10.007
Organic bioelectronics: a new era for organic electronics.
G. Malliaras (2013)
10.1002/9783527803835.CH8
Conducting Polymer Hydrogels: Synthesis, Properties, and Applications for Biosensors
Y. Zhao (2017)
10.1021/cr300335p
Graphene: promises, facts, opportunities, and challenges in nanomedicine.
H. Y. Mao (2013)
10.1002/ANGE.200903463
Kohlenstoffnanomaterialien für Biosensoren: Nanoröhren oder Graphen – was eignet sich besser?
W. Yang (2010)
10.1002/smll.201000493
Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
L. Randeniya (2010)
10.1201/B15626-21
Nanomedicine in Regenerative Biosystems, Human Augmentation, and Longevity
F. Boehm (2013)
10.1038/srep23931
Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model
K. Sun (2016)
10.1021/CM4022003
The Rise of Organic Bioelectronics
J. Rivnay (2014)
10.1021/nn506607x
Hierarchical patterning of multifunctional conducting polymer nanoparticles as a bionic platform for topographic contact guidance.
D. Ho (2015)
10.1103/PHYSREVAPPLIED.11.044012
Band Alignment Engineers Faradaic and Capacitive Photostimulation of Neurons Without Surface Modification
S. B. Srivastava (2019)
10.1002/ADFM.201102232
Organic bionics: a new dimension in neural communications
S. Moulton (2012)
10.1016/J.SYNTHMET.2012.05.022
Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells
B. Weng (2012)
10.1002/adma.201102378
Highly conformable conducting polymer electrodes for in vivo recordings.
D. Khodagholy (2011)
Supported lipid bilayer as a biomimetic platform for neuronal cell culture
D. Afanasenkau (2013)
10.25560/49790
Organic mixed ionic/electronic conductors for bioelectronics applications
Pacheco Moreno (2016)
Explorer Insinuating electronics in the brain
M. Hughes (2016)
10.1039/C5RA07210G
A bio-friendly, green route to processable, biocompatible graphene/polymer composites
E. Murray (2015)
Probing nanoscale properties of organic conducting polymer interfaces using atomic force microscopy
A. Gelmi (2012)
See more
Semantic Scholar Logo Some data provided by SemanticScholar