Online citations, reference lists, and bibliographies.
← Back to Search

Photodynamic Effects Of Novel XF Porphyrin Derivatives On Prokaryotic And Eukaryotic Cells

T. Maisch, C. Bosl, R.-M. Szeimies, N. Lehn, C. Abels

Cite This
Download PDF
Analyze on Scholarcy
Share
ABSTRACT The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to the killing of gram-positive antibiotic-resistant bacteria of the skin uses light in combination with a photosensitizer to induce a phototoxic reaction. Different concentrations (0 to 100 μM) of porphyrin-based photosensitizers (CTP1, XF70, and XF73) and different incubation times (5 min, 1 h, and 4 h) were used to determine phototoxicity against two methicillin-resistant Staphylococcus aureus strains, one methicillin-sensitive S. aureus strain, one methicillin-resistant Staphylococcus epidermidis strain, one Escherichia coli strain, and human keratinocytes and fibroblasts. Incubation with 0.005 μM XF70 or XF73, followed by illumination, yielded a 3-log10 (≥99.9%) decrease in the viable cell numbers of all staphylococcal strains, indicating that the XF drugs have high degrees of potency against gram-positive bacteria and also that the activities of these novel drugs are independent of the antibiotic resistance pattern of the staphylococci examined. CTP1 was less potent against the staphylococci under the same conditions. At 0.005 μM, XF70 and XF73 demonstrated no toxicity toward fibroblasts or keratinocytes. No inactivation of E. coli was detected at this concentration. XF73 was confirmed to act via a reactive oxygen species from the results of studies with sodium azide (a quencher of singlet oxygen), which reduced the killing of both eukaryotic and prokaryotic cells. When a quencher of superoxide anion and the hydroxyl radical was used, cell killing was not inhibited. These results demonstrate that the porphyrin-based photosensitizers had concentration-dependent differences in their efficacies of killing of methicillin-resistant staphylococcal strains via reactive oxygen species without harming eukaryotic cells at the same concentrations.