Online citations, reference lists, and bibliographies.
← Back to Search

Self-Transmissible Mercury Resistance Plasmids With Gene-Mobilizing Capacity In Soil Bacterial Populations: Influence Of Wheat Roots And Mercury Addition

Eric Smit, Anneke Wolters, Jan Dirk van Elsas

Save to my Library
Download PDF
Analyze on Scholarcy
ABSTRACT A set of mercury resistance plasmids was obtained from wheat rhizosphere soil amended or not amended with mercuric chloride via exogenous plasmid isolation by using Pseudomonas fluorescens R2f, Pseudomonas putida UWC1, andEnterobacter cloacae BE1 as recipient strains. The isolation frequencies were highest from soil amended with high levels of mercury, and the isolation frequencies from unamended soil were low. With P. putida UWC1 as the recipient, the isolation frequency was significantly enhanced in wheat rhizosphere compared to bulk soil. Twenty transconjugants were analyzed per recipient strain. All of the transconjugants contained plasmids which were between 40 and 50 kb long. Eight selected plasmids were distributed among five groups, as shown by restriction digestion coupled with a similarity matrix analysis. However, all of the plasmids formed a tight group, as judged by hybridization with two whole-plasmid probes and comparisons with other plasmids in dot blot hybridization analyses. The results of replicon typing and broad-host-range incompatibility (Inc) group-specific PCR suggested that the plasmid isolates were not related to any previously described Inc group. Although resistance to copper, resistance to streptomycin, and/or resistance to chloramphenicol was found in several plasmids, catabolic sequences were generally not identified. One plasmid, pEC10, transferred into a variety of bacteria belonging to the β and γ subdivisions of the class Proteobacteria and mobilized as well as retromobilized the IncQ plasmid pSUP104. A PCR method for detection of pEC10-like replicons was used, in conjunction with other methods, to monitor pEC10-homologous sequences in mercury-polluted and unpolluted soils. The presence of mercury enhanced the prevalence of pEC10-like replicons in soil and rhizosphere bacterial populations.