Online citations, reference lists, and bibliographies.
← Back to Search

Quantifying Serum Antiplague Antibody With A Fiber-Optic Biosensor

G. P. Anderson, K. D. King, L. Cao, M. Jacoby, F. Ligler, J. Ezzell
Published 1998 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
ABSTRACT The fiber-optic biosensor, originally developed to detect hazardous biological agents such as protein toxins or bacterial cells, has been utilized to quantify the concentration of serum antiplague antibodies. This biosensor has been used to detect and quantify the plague fraction 1 antigen in serum, plasma, and whole-blood samples, but its ability to quantify serum antibodies has not been demonstrated. By using a competitive assay, the concentration of serum antiplague antibodies was ascertained in the range of 2 to 15 μg/ml. By making simple dilutions, concentrations for 11 serum samples whose antiplague antibody concentrations were unknown were determined and were found to be in good agreement with enzyme-linked immunosorbent assay results. The competitive assay method could be used to effectively determine the exposure to plague of animals or humans or could be applied to other diseases, such as hepatitis or AIDS, where the presence of antibodies is used to diagnose infection.
This paper references
10.1016/S0925-4005(97)80109-8
The use of polyvinyl alcohol glutaraldehyde antigen coated discs for laser induced fluorescence detection of plague
L. Carvalho (1996)
10.7589/0090-3558-28.4.610
Plague Surveillance by Serological Testing of Coyotes (Canis latrans) in Los Angeles County, California
C. Thomas (1992)
10.1159/000160671
Studies on Immunization Against Plague
M. Schaer (1956)
10.1016/S0956-5663(97)00027-4
Fiber optic-based biosensor for ricin.
U. Narang (1997)
Application of enzyme immunoassays for the confirmation of clinically suspect plague in Namibia, 1982.
J. Williams (1986)
10.1016/0022-1759(72)90006-3
The conjugation of immunoglobulins with tetramethylrhodamine isothiocyanate. A comparison between the amorphous and the crystalline fluorochrome.
L. Amante (1972)
Potency of killed plague vaccines prepared from avirulent Yersinia pestis.
J. Williams (1980)
10.1128/CDLI.4.5.587-591.1997
Field evaluation of an immunoglobulin G anti-F1 enzyme-linked immunosorbent assay for serodiagnosis of human plague in Madagascar.
B. Rasoamanana (1997)
10.1007/978-1-4684-8422-9
Plague and Other Yersinia Infections
T. Butler (1983)
10.1016/0003-2697(89)90662-3
Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces.
S. Bhatia (1989)
10.1117/12.58764
Fluorometer and tapered fiber optic probes for sensing in the evanscent wave
J. Golden (1992)
10.1016/0956-5663(93)80012-E
A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition
G. M. Anderson (1993)
Studies on immunization against plague. I. The isolation and characterization of the soluble antigen of Pasteurella pestis.
E. E. Baker (1952)
10.1117/1.601146
Portable multichannel fiber optic biosensor for field detection
J. Golden (1997)
10.1021/AC00110A018
Detection of TNT in Water Using an Evanescent Wave Fiber-Optic Biosensor
L. Shriver-Lake (1995)
10.7589/0090-3558-30.2.205
SEROLOGIC SURVEY AND SERUM BIOCHEMICAL REFERENCE RANGES OF THE FREE-RANGING MOUNTAIN LION (FELIS CONCOLOR) IN CALIFORNIA
J. Paul-Murphy (1994)
10.1093/JMEDENT/30.1.20
Plague (Yersinia pestis) in cats: description of experimentally induced disease.
P. Gasper (1993)
10.1016/0147-9571(94)90036-1
Serological surveillance of plague in dogs and cats, California, 1979-1991.
B. Chomel (1994)
10.1006/ABIO.1996.0006
Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor.
L. Tempelman (1996)
10.1128/JCM.33.2.336-341.1995
Detection of Yersinia pestis fraction 1 antigen with a fiber optic biosensor.
L. Cao (1995)



This paper is referenced by
10.1016/J.BIOS.2004.10.026
Evanescent wave fluorescence biosensors.
C. R. Taitt (2005)
10.1016/J.ACA.2005.12.020
Biosensor technology for detecting biological warfare agents : Recent progress and future trends
J. Gooding (2006)
10.1109/TENCON.2004.1415021
Fiber optic fluoro-immunosensor for detection of Salmonella based on evanescent wave absorption
H.J. Jung (2004)
10.1016/J.SNB.2007.05.012
Sensitive detection of antibody against antigen F1 of Yersinia pestis by an antigen sandwich method using a portable fiber optic biosensor
H. Wei (2007)
10.1016/S0956-5663(00)00147-0
Development of dual receptor biosensors: an analysis of FRET pairs.
S. A. Grant (2001)
10.1371/journal.pntd.0000629
Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis
Shi Qu (2010)
10.3390/S7060797
Recent Development in Optical Fiber Biosensors
M. E. Bosch (2007)
10.1038/nchem.334
Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein.
Mrinmoy De (2009)
10.1016/j.vetimm.2008.04.009
Evanescent-wave biosensor for field serodiagnosis of tortoise mycoplasmosis.
Daniel R. Brown (2008)
10.1016/J.SNB.2006.08.010
Direct detection of Yersinia pestis from the infected animal specimens by a fiber optic biosensor
H. Wei (2007)
10.1016/S0039-9140(01)00529-X
Hapten immobilization for antibody sensing using a dynamic modification protocol.
D. R. Fry (2001)
10.1016/S0022-1759(02)00327-7
Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor.
G. P. Anderson (2002)
10.1016/j.bjm.2017.03.014
Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA
N. Feng (2018)
10.1590/S0100-879X2000000700013
The use of filter paper plasticized with polyvinyl alcohol-glutaraldehyde in ELISA.
G. H. Barbosa (2000)
10.1016/J.BIOS.2005.12.018
Multiplexed measurement of serum antibodies using an array biosensor.
M. Moreno-Bondi (2006)
10.1016/S0956-5663(02)00028-3
Optical biosensors for real-time measurement of analytes in blood plasma.
E. Brynda (2002)
10.21055/0370-1069-2009-4(102)-11-14
Биосенсоры: современное состояние и перспективы применения в лабораторной диагностике особо опасных инфекционных болезней
Д. В. Уткин (2009)
10.1038/nchem.334
Sensing of Proteins in Human Serum using Nanoparticle-Green Fluorescent Protein Conjugates
Mrinmoy De (2009)
RAPTOR Fiber Optic Biosensor Proceedings of the First Conference on Point Detection for Chemical and Biological Defense , Oct . , 2000 RAPTOR : A PORTABLE , AUTOMATED BIOSENSOR
G. M. Anderson (2000)
10.1111/J.1745-4581.2007.00077.X
LIGHT SCATTERING, FIBER OPTIC- AND CELL-BASED SENSORS FOR SENSITIVE DETECTION OF FOODBORNE PATHOGENS
A. Bhunia (2007)
10.1109/JMEMS.2008.2006814
Evanescent-Wave Spectroscopy Using an SU-8 Waveguide for Rapid Quantitative Detection of Biomolecules
L. Jiang (2008)
10.1117/12.394059
Investigation of labeling FRET pairs to biomolecules for the development of dual-receptor biosensors
S. Grant (2000)
10.1117/12.2194752
Dissolved Oxygen Sensing Using an Optical Fiber Long Period Grating Coated With Hemoglobin
M. Partridge (2016)
Semantic Scholar Logo Some data provided by SemanticScholar