Online citations, reference lists, and bibliographies.
← Back to Search

Murine Oviduct Epithelial Cell Cytokine Responses To Chlamydia Muridarum Infection Include Interleukin-12-p70 Secretion

Raymond M. Johnson

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
ABSTRACT Epithelial cells play an important role in host defense as sentinels for invading microbial pathogens. Chlamydia trachomatis is an intracellular bacterial pathogen that replicates in reproductive tract epithelium. Epithelial cells lining the reproductive tract likely play a key role in triggering inflammation and adaptive immunity during Chlamydia infections. For this report a murine oviduct epithelial cell line was derived in order to determine how epithelial cells influence innate and adaptive immune responses during Chlamydia infections. As expected, oviduct epithelial cells infected by Chlamydia muridarum produced a broad spectrum of chemokines, including CXCL16, and regulators of the acute-phase response, including interleukin-1α (IL-1α), IL-6, and tumor necrosis factor alpha. In addition, infected epithelial cells expressed cytokines that augment gamma interferon (IFN) production, including IFN-α/β and IL-12-p70. To my knowledge this is the first report of a non-myeloid/lymphoid cell type making IL-12-p70 in response to an infection. Equally interesting, infected epithelial cells significantly upregulated transforming growth factor alpha precursor expression, suggesting a mechanism by which they might play a direct role in the pathological scarring seen as a consequence of Chlamydia infections. Data from these in vitro studies predict that infected oviduct epithelium contributes significantly to host innate and adaptive defenses but may also participate in the immunopathology seen with Chlamydia infections.