Online citations, reference lists, and bibliographies.
← Back to Search

Keys To Symbiotic Harmony

W. Broughton, S. Jabbouri, X. Perret
Published 2000 · Medicine, Biology

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
At least three different sets of symbiotic signals (here, they are compared to locks and keys) are exchanged between legumes and rhizobia during nodule development. Flavonoids, the first of these, emanate from the plant and interact with rhizobial NodD proteins that serve as both environmental
This paper references
Neue Untersuchungen über die Wurzelknöllchen der Leguminosen und deren Erreger
L. Hiltner (1903)
Leguminous plants and their associated organisms
J. K. Wilson (1938)
10.1099/00221287-35-3-511
The Application of Computer Techniques to the Taxonomy of the Root-nodule Bacteria of Legumes
P. Graham (1964)
10.1099/00221287-51-2-245
Adansonian analysis of the Rhizobiaceae.
M. Moffett (1968)
10.1093/JXB/22.1.163
Scanning Electron Microscopy of Plant Roots
P. Dart (1971)
Rhizobia in tropical legumes. I. Preliminary studies of antibiotic sensitivity, pH and temperature optima
W. J. Broughton (1975)
Infection and development of leguminous nodules
P. Dart (1977)
10.1111/J.1365-2672.1978.TB04213.X
Control of Specificity in Legume‐Rhizobium Associations
W. Broughton (1978)
Rhizobia in tropical legumes. VI. Glasshouse and field trials with rhizobia for Centrosema pubescens Benth
A. Ikram (1978)
Rhizobia in tropical legumes. XII. Inoculation of Psophocarpus tetragonolobus (L.) DC, p
A Ikram (1978)
Rhizobia in tropical legumes. XII. Inoculation of Psophocarpus tetragonolobus (L.) DC, p. 205–210
A. Ikram (1978)
Rhizobia in tropical legumes. V. Problems involved in selecting inoculants for soyabeans, p. 392–409
A. W. Faizah (1979)
Rhizobia in tropical legumes. V. Problems involved in selecting inoculants for soyabeans
A W Faizah (1979)
10.1016/0038-0717(80)90105-4
Rhizobia in tropical legumes—VII. Effectiveness of different isolates on Psophocarpus tetragonolobus (L.) DC
A. Ikram (1980)
10.1111/J.1365-2672.1980.TB01042.X
Relationships Amongst the Fast-growing Rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their Affinities with Other Rhizobial Groups
M. Trinick (1980)
Rhizobia in tropical legumes
A Ikram (1980)
Symbiosis in cell evolution
L. Margulis (1981)
10.1007/978-1-4684-8151-8
Handbook of LEGUMES of World Economic Importance
J. Duke (1981)
10.2307/1220014
Handbook of Legumes of World Economic Importance
R. Cowan (1982)
10.1038/318624A0
Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens
S. Stachel (1985)
10.1002/j.1460-2075.1985.tb03715.x
A Tn3 lacZ transposon for the random generation of beta‐galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium.
S. Stachel (1985)
10.1007/978-3-642-70722-3
The Rhizosphere
Professor Dr. Elroy A. Curl (1986)
10.1038/323632A0
Flavones induce expression of nodulation genes in Rhizobium
J. Redmond (1986)
10.1016/0008-6215(86)80039-8
The structure of the exopolysaccharide from Rhizobium sp. strain ANU280 (NGR234)
S. Djordjevic (1986)
10.1038/324090a0
Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants
J. Firmin (1986)
10.1126/SCIENCE.3738520
A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes.
N. Peters (1986)
10.2323/JGAM.33.241
ELECTRON MICROSCOPIC STUDIES OF THE ROOT NODULE OF PTEROCARPUS INDICUS
S. Higashi (1987)
10.1094/MPMI-1-161
Identification of a nodD-dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes.
B. Bassam (1988)
10.1094/MPMI-1-259
The nod D1 gene from Rhizobium strain NGR234 is a key determinant in the extension of host range to the nonlegume Parasponia
G. L. Bender (1988)
10.1016/0038-0717(88)90152-6
Rhizobia in tropical legumes: Ineffective nodulation of Arachis hypogaea L. By fast-growing strains
C. Wong (1988)
10.1002/j.1460-2075.1989.tb03382.x
Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots
K. VandenBosch (1989)
10.1104/PP.91.3.842
A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti.
C. Maxwell (1989)
Population dynamics and rhizosphere interactions.
M. Bazin (1990)
10.1104/PP.93.4.1552
Concurrent Synthesis and Release of nod-Gene-Inducing Flavonoids from Alfalfa Roots.
C. Maxwell (1990)
10.1073/PNAS.87.7.2680
Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum.
M. Göttfert (1990)
10.1128/jb.172.5.2769-2773.1990
Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes
U. Hartwig (1990)
10.1105/tpc.2.8.687
Sequential induction of nodulin gene expression in the developing pea nodule.
B. Scheres (1990)
Population dynamics and rhizosphere interactions, p. 99–127
M. J. Bazin (1990)
Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in 5650 MINIREVIEW J. BACTERIOL. Rhizobium meliloti strains containing different nodD genes
U. A. Hartwig (1990)
Carbon economy , p . 59 – 97
J. M. Whipps (1990)
Carbon economy
J M Whipps (1990)
10.1104/PP.97.2.759
Rhizobium nod Gene Inducers Exuded Naturally from Roots of Common Bean (Phaseolus vulgaris L.).
M. Hungria (1991)
10.1104/PP.95.3.804
Release and Modification of nod-Gene-Inducing Flavonoids from Alfalfa Seeds.
U. Hartwig (1991)
10.1094/MPMI-4-262
7,4'-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate
E. Messens (1991)
10.1128/jb.173.17.5371-5384.1991
Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs
F. Dazzo (1991)
10.1128/aem.58.5.1705-1710.1992
Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate
R. Kape (1992)
10.1126/science.257.5066.70
Induction of Pre-Infection Thread Structures in the Leguminous Host Plant by Mitogenic Lipo-Oligosaccharides of Rhizobium
A. V. van Brussel (1992)
10.1111/J.1365-313X.1992.00385.X
Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum
A. Rae (1992)
10.2307/2261465
Symbiosis of Plants and Microbes
D. Werner (1992)
10.1128/aem.58.7.2137-2143.1992
Diversity among Rhizobia Effective with Robinia pseudoacacia L
Janet McCray Batzli (1992)
10.1016/s0021-9258(18)48495-5
Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon.
G. Smit (1992)
10.1128/jb.174.16.5177-5182.1992
Regulation of nodulation gene expression by NodD in rhizobia
H. R. Schlaman (1992)
10.1111/j.1365-2958.1992.tb01793.x
Broad‐host‐range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O‐acetylated or sulphated
N. Price (1992)
Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons
L. Margulis (1992)
Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosa
P. Bonfantefasolo (1992)
Symbiosis of plants and microbes, 1st ed
D. Werner (1992)
10.1007/978-94-017-2416-6
New Horizons in Nitrogen Fixation
R. Palacios (1993)
10.1093/JXB/44.3.547
Autoregulation and nitrate inhibition of nodule formation in soybean cv. Enrei and its nodulation mutants
P. Francisco (1993)
10.1007/978-94-017-2416-6_22
Nod Genes and Nod Factors of Rhizobium Species NGR234
B. Relić (1993)
10.1128/jb.175.3.750-757.1993
Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum
M. Breedveld (1993)
10.1094/MPMI-6-764
Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum.
B. Relić (1993)
10.1046/J.1365-313X.1993.04030555.X
Abortion of infection during the Rhizobium meliloti—alfalfa symbiotic interaction is accompanied by a hypersensitive reaction
J. Vasse (1993)
10.1104/pp.103.3.925
Five Nodulation Mutants of White Sweetclover (Melilotus alba Desr.) Exhibit Distinct Phenotypes Blocked at Root Hair Curling, Infection Thread Development, and Nodule Organogenesis
L. J. Utrup (1993)
Biological activity of Rhizobium sp
B. Relić (1993)
Nodulation of Robinia pseudoacacia by two Rhizobium strains
B. Schäfers (1993)
Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPSI)-deficient Rhizobium meliloti mutant. Planta 190:415–425
K. Niehaus (1993)
10.1094/MPMI-7-0411
Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna unguiculata root hairs.
A. Krause (1994)
10.1128/jb.176.17.5409-5413.1994
Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms
J. Rao (1994)
10.1128/jb.176.11.3286-3294.1994
Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside
J. Newman (1994)
10.1111/J.1574-6968.1994.TB06903.X
A cloned cellulase gene from Erwinia carotovora subsp. carotovora is expressed in Rhizobium fredii but does not influence nodulation of cowpea
H. Krishnan (1994)
10.1094/MPMI-7-0384
Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate
P. Schmidt (1994)
10.1111/j.1365-2958.1994.tb00412.x
Nod factors of Rhizobium are a key to the legume door
B. Relić (1994)
Bacterial and plant glycoconjugates at the Rhizobium-legume interface.
N. J. Brewin (1994)
10.1094/MPMI-8-0855
Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity
J. Rao (1995)
10.1016/S0176-1617(11)81419-7
Two Types of Nodules Induced on Trifolium pratense by Mutants of Rhizobium leguminosarum bv. trifolii deficient in Exopolysaccharide Production
A. Skorupska (1995)
10.1111/j.1365-2958.1995.18050831.x
A TnphoA insertion within the Bradyrhizobium japonicum sipS gene, homologous to prokaryotic signal peptidases, results in extensive changes in the expression of PBM‐specific nodulins of infected soybean (Glycine max) cells
P. Müller (1995)
10.1016/B978-0-08-042510-8.50015-7
8 – Signals to and Emanating from Rhizobium Largely Control Symbiotic Specificity
R. Fellay (1995)
10.1046/J.1365-313X.1995.7020253.X
Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots.
J. Bono (1995)
Signals to and emanating from Rhizobium largely control symbiotic specificity, p. 199–220
R. Fellay (1995)
10.1007/978-1-4613-1213-0_7
Legume Signals to Rhizobial Symbionts: A New Approach for Defining Rhizosphere Colonization
D. Phillips (1996)
10.1094/MPMI-9-0546
Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic B-glucan synthesis.
J. Dunlap (1996)
10.1071/PP9960285
Defective Infection and Nodulation of Clovers by Exopolysaccharide Mutants of Rhizobium leguminosarum bv. trifolii
B. Rolfe (1996)
10.1104/pp.110.2.501
The Auxin Transport Inhibitor N-(1-Naphthyl)phthalamic Acid Elicits Pseudonodules on Nonnodulating Mutants of White Sweetclover
C. Wu (1996)
10.1046/J.1365-313X.1996.10010023.X
Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules.
E. Minami (1996)
10.1094/MPMI-9-0282
Localization of lipoxygenase proteins and mRNA in pea nodules : Identification of lipoxygenase in the lumen of infection threads
C. D. Gardner (1996)
10.1007/978-1-4613-1213-0
Plant-Microbe Interactions
G. Stacey (1996)
Expression of the early nodulin, ENOD40, in response to various lipo-chitin signal molecules
E. Minami (1996)
10.1007/978-3-642-59112-9
Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture
A. Legocki (1997)
10.1007/S004680050090
Identification and characterization of flavonoids in the root exudate of
Petra Scheidemann (1997)
10.1038/387394A0
Molecular basis of symbiosis between Rhizobium and legumes
C. Freiberg (1997)
10.1146/ANNUREV.ARPLANT.48.1.493
METABOLITE TRANSPORT ACROSS SYMBIOTIC MEMBRANES OF LEGUME NODULES.
M. Udvardi (1997)
10.1128/jb.179.9.3013-3020.1997
NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum
J. Loh (1997)
10.1094/MPMI.1997.10.1.132
Identification of a High Affinity Binding Site for Lipo-oligosaccharidic NodRm Factors in the Microsomal Fraction of Medicago Cell Suspension Cultures
A. Niebel (1997)
10.1007/PL00009677
Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia
Petra Scheidemann (1997)
10.1111/J.1399-3054.1997.TB03452.X
The peribacteroid membrane
L. Whitehead (1997)
10.1094/MPMI.1997.10.3.339
Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris
Maria Cristina Bolan̈os-Vásquez (1997)
10.1105/tpc.9.3.275
Model Legumes Get the Nod
D. Cook (1997)
10.1007/978-3-642-59112-9_23
Biochemical and Molecular Analyses of Rhizobial Responses to Legume Flavonoids
J. Cooper (1997)
Biochemical and molecular analyses of rhizobial responses to legume flavonoids, p. 115–118
J. E. Cooper (1997)
Applying plant-microbe signalling concepts to alfalfa: roles for secondary metabolites, p. 319–342
D. A. Phillips (1997)
Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11:316–321
P. Scheidemann (1997)
Roles of flavonoids in symbiotic and defense reactions in legume
H. A. Stafford (1997)
Applying plant - microbe signalling concepts to alfalfa : roles for secondary metabolites
B. D. McKersie (1997)
10.1094/MPMI.1998.11.10.999
Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively
W. D'Haeze (1998)
10.1007/978-94-011-5060-6_22
Tissue and Cell Invasion by Rhizobium: The Structure and Development of Infection Threads and Symbiosomes
N. J. Brewin (1998)
10.1104/PP.117.2.599
Release of flavonoids by the soybean cultivars McCall and peking and their perception as signals by the nitrogen-fixing symbiont sinorhizobium fredii
Pueppke (1998)
10.1007/978-94-011-5060-6_20
Functions of Rhizobial Nodulation Genes
J. Downie (1998)
10.1046/j.1365-2958.1998.00761.x
nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon
R. Fellay (1998)
10.1046/j.1365-2958.1998.00920.x
Symbiotic implications of type III protein secretion machinery in Rhizobium
V. Viprey (1998)
10.1094/MPMI.1998.11.5.343
SyrM1 of Rhizobium sp. NGR234 Activates Transcription of Symbiotic Loci and Controls the Level of Sulfated Nod Factors
M. Hanin (1998)
10.1111/J.1574-6941.1998.TB00505.X
Phaseolus vulgaris is a non‐selective host for nodulation
J. Michiels (1998)
10.1094/MPMI.1998.11.12.1233
Role of Exopolysaccharides of Rhizobium leguminosarum bv. viciae as Host Plant-Specific Molecules Required for Infection Thread Formation During Nodulation of Vicia sativa
W. V. Workum (1998)
10.1128/JB.180.19.5183-5191.1998
Succinoglycan Is Required for Initiation and Elongation of Infection Threads during Nodulation of Alfalfa byRhizobium meliloti
Hai-Ping Cheng (1998)
10.1094/MPMI.1998.11.8.784
Production of Sinorhizobium meliloti nod Gene Activator and Repressor Flavonoids from Medicago sativa Roots
J. Zuanazzi (1998)
10.1007/s004380050840
The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function
V. E. Tsyganov (1998)
Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes, p. 417–429
N. J. Brewin (1998)
Functions of rhizobial nodulation genes, p. 387–402
J. A. Downie (1998)
10.1038/46058
A plant regulator controlling development of symbiotic root nodules
L. Schauser (1999)
10.1094/MPMI.1999.12.4.293
Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges.
S. Pueppke (1999)
10.1007/s004380051082
A Nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes
N. Roberts (1999)
10.1073/PNAS.96.10.5856
A nod factor binding lectin with apyrase activity from legume roots.
M. Etzler (1999)
10.1128/JB.181.5.1544-1554.1999
The Bradyrhizobium japonicum nolA Gene Encodes Three Functionally Distinct Proteins
J. Loh (1999)
10.1007/s004250050603
Localization of H+-ATPases in soybean root nodules
E. Fedorova (1999)
10.1073/PNAS.96.8.4704
Ligand specificity of a high-affinity binding site for lipo-chitooligosaccharidic Nod factors in Medicago cell suspension cultures.
F. Gressent (1999)
10.1016/S1369-5266(99)80054-5
Genealogy of legume-Rhizobium symbioses.
W. Broughton (1999)
A nod factor lectin with apyrase activity from legume roots
M. Etzler (1999)
10.1046/j.1365-2958.1999.01361.x
High‐resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234
X. Perret (1999)
A plant regulaVOL
L. Schauser (1999)
Localization of H1-ATPase in soybean root nodules
E. Fedorova (1999)
Localization of Hϩ-ATPase in soybean root nodules
E Fedorova (1999)
Molecular aspects of host-specific nodulation, p. 1–37
M. Hanin (1999)
A nod factor binding protein with apyrase activity from legume
M. E. Etzler (1999)
Molecular aspects of host-specific nodulation
M Hanin (1999)
Root hairs : cell and molecular biology
R. Ridge (2000)
10.1201/9780849384974-13
Organic Signals Between Plants and Microorganisms
D. Werner (2000)
10.1074/jbc.275.21.15676
Nod Factor Requirements for Efficient Stem and Root Nodulation of the Tropical Legume Sesbania rostrata *
W. D'Haeze (2000)
10.1126/SCIENCE.287.5462.2492
Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival.
K. LeVier (2000)
10.1128/MMBR.64.1.180-201.2000
Molecular Basis of Symbiotic Promiscuity
X. Perret (2000)
10.1128/JB.182.15.4310-4318.2000
Alfalfa Root Nodule Invasion Efficiency Is Dependent on Sinorhizobium melilotiPolysaccharides
B. Pellock (2000)
Physical and genetic analysis of the broad host-range Rhizobium sp. NGR234.
X. Perret (2000)
10.1007/978-4-431-68370-4_15
Nod-Factors in Symbiotic Development of Root Hairs
H. Irving (2000)
Molecular basis of symbiotic promiscuity. Microbiol
X Perret (2000)
Physical and genetic analysis of the broad host-range Rhizobium sp
X. Perret (2000)
10.1201/9781420005585
The rhizosphere : biochemistry and organic substances at the soil-plant interface
R. Pinton (2001)
10.1016/S0929-1393(00)00125-6
Prokaryotic nitrogen fixation: E.W. Triplett (Ed.); Horizon Scientific Press, Wymondham, Norfolk, UK, Portland, OR, USA, 2000, 800 pages, ISBN 1-898486-19-0 (£199.99, $239.99)
J. Sprent (2001)



This paper is referenced by
10.3389/fmicb.2021.669404
Rhizobial–Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability
R. Goyal (2021)
10.1111/1751-7915.13906
Legume–rhizobium dance: an agricultural tool that could be improved?
L. Basile (2021)
10.3390/genes11050521
A Minimal Genetic Passkey to Unlock Many Legume Doors to Root Nodulation by Rhizobia
J. Unay (2020)
10.3390/plants9020276
Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and ‘Crack-Entry’ Legume Groundnut (Arachis hypogaea L.)
Vinay Sharma (2020)
10.1007/978-3-030-35296-7_9
Prospects for Developing Effective and Competitive Native Strains of Rhizobium Inoculants in Nigeria
A. Gabasawa (2020)
10.1093/jxb/eraa405
Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT.
Yantao Luo (2020)
10.20546/ijcmas.2020.902.019
Enhancement of Plant Growth by Using PGPR for a Sustainable Agriculture: A Review
Anshul Kumar (2020)
10.22207/jpam.14.2.04
Rhizobium-Legume Symbiosis: Molecular Determinants and Geospecificity
P. Pindi (2020)
10.3390/ijms21155565
Dephosphorylation of LjMPK6 by Phosphatase LjPP2C is Involved in Regulating Nodule Organogenesis in Lotus japonicus
Zhongyuan Yan (2020)
10.1016/bs.abr.2019.10.002
Nod factor signaling in symbiotic nodulation
Mame Diarra Mbengue (2020)
Understanding the genetic basis for competitive nodule formation by clover rhizobia
Shaun Ferguson (2019)
The Soybean Rfg 1 Gene Restricts Nodulation by Sinorhizobium fredii USDA 193
Yinglun Fan (2019)
10.3389/fmicb.2019.00154
Deletion of rRNA Operons of Sinorhizobium fredii Strain NGR234 and Impact on Symbiosis With Legumes
Ala Eddine Cherni (2019)
10.1007/978-981-13-5904-0_7
Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture
S. Sindhu (2019)
10.1128/AEM.01552-19
An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110T
J. J. Speck (2019)
10.1007/s10457-019-00382-8
Regulation of nodule number by GmNORK is dependent on expression of GmNIC in soybean
L. Wang (2019)
10.22161/ijeab.45.29
Assessment of Rhizobia Strains Isolates of Soils around Lake Victoria Basin for their Effectiveness in Nodulation and Symbiotic Efficiency on Soybeans and Bambara Groundnuts
Odhiambo Benson Onyango (2019)
10.1007/978-3-030-12153-2
Strigolactones - Biology and Applications
H. Koltai (2019)
10.1111/nph.16392
Host‐specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae
S. Boivin (2019)
10.1093/femsle/fnz217
Connecting signals and benefits through partner choice in plant-microbe interactions.
B. S. Younginger (2019)
10.1093/femsec/fiz184
Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even under high nitrate concentrations.
Hien P Nguyen (2019)
10.1007/s11104-019-03950-0
Heterologous expression of nifA or nodD genes improves chickpea-Mesorhizobium symbiotic performance
J. R. da-Silva (2019)
10.1007/978-3-030-12153-2_4
The role of strigolactones in plant-microbe interactions
S. Rochange (2019)
10.1007/978-981-13-5767-1_1
Synthetic Plasmids to Challenge Symbiotic Nitrogen Fixation Between Rhizobia and Legumes
J. Unay (2019)
10.1007/978-981-13-7318-3_3
Chitin Prevalence and Function in Bacteria, Fungi and Protists.
L. Steinfeld (2019)
10.3389/fmicb.2019.02569
High-Throughput Mass Spectrometric Analysis of the Whole Proteome and Secretome From Sinorhizobium fredii Strains CCBAU25509 and CCBAU45436
H. M. Rehman (2019)
10.3389/fmicb.2018.02843
Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans (Glycine soja) From Central China but Are Ineffective on Northern China Accessions
Francisco Temprano-Vera (2018)
10.1111/plb.12693
Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress.
Karina I. Paredes-Páliz (2018)
10.3389/fmicb.2018.03155
InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species
Hien P Nguyen (2018)
Summary Note on Nitrogen Fixation, Legume Nodulation and Abiotic Factors Affecting Biological Nitrogen Fixation Inside the Soil
W. Gebremedhin (2018)
10.3389/fpls.2018.00313
Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions
Qi Wang (2018)
Genetic Determinants of Host-Specificity in Mesorhizobium loti NZP2037
James T. H. Chang (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar