Online citations, reference lists, and bibliographies.
← Back to Search

Phylogeny Of The Major Head And Tail Genes Of The Wide-Ranging T4-Type Bacteriophages

Françoise Tétart, Carine Desplats, Mzia Kutateladze, Caroline Monod, Hans-Wolfgang Ackermann, H. M. Krisch

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
ABSTRACT We examined a number of bacteriophages with T4-type morphology that propagate in different genera of enterobacteria, Aeromonas , Burkholderia, and Vibrio . Most of these phages had a prolate icosahedral head, a contractile tail, and a genome size that was similar to that of T4. A few of them had more elongated heads and larger genomes. All these phages are phylogenetically related, since they each had sequences homologous to the capsid gene (gene 23 ), tail sheath gene (gene 18 ), and tail tube gene (gene 19 ) of T4. On the basis of the sequence comparison of their virion genes, the T4-type phages can be classified into three subgroups with increasing divergence from T4: the T-evens, pseudoT-evens, and schizoT-evens. In general, the phages that infect closely related host species have virion genes that are phylogenetically closer to each other than those of phages that infect distantly related hosts. However, some of the phages appear to be chimeras, indicating that, at least occasionally, some genetic shuffling has occurred between the different T4-type subgroups. The compilation of a number of gene 23 sequences reveals a pattern of conserved motifs separated by sequences that differ in the T4-type subgroups. Such variable patches in the gene 23 sequences may determine the size of the virion head and consequently the viral genome length. This sequence analysis provides molecular evidence that phages related to T4 are widespread in the biosphere and diverged from a common ancestor in acquiring the ability to infect different host bacteria and to occupy new ecological niches.