Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Structure Of Pseudomonas Aeruginosa Populations Analyzed By Single Nucleotide Polymorphism And Pulsed-Field Gel Electrophoresis Genotyping

Gracia Morales, Lutz Wiehlmann, Peter Gudowius, Christian van Delden, Burkhard Tümmler, José Luis Martínez, Fernando Rojo

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
ABSTRACT Pseudomonas aeruginosa has a wide ecological distribution that includes natural habitats and clinical settings. To analyze the population structure and distribution of P. aeruginosa, a collection of 111 isolates of diverse habitats and geographical origin, most of which contained a genome with a different SpeI macrorestriction profile, was typed by restriction fragment length polymorphism based on 14 single nucleotide polymorphisms (SNPs) located at seven conserved loci of the core genome (oriC, oprL, fliC, alkB2, citS, oprI, and ampC). The combination of these SNPs plus the type of fliC present (a or b) allowed the assignment of a genetic fingerprint to each strain, thus providing a simple tool for the discrimination of P. aeruginosa strains. Thirteen of the 91 identified SNP genotypes were found in two or more strains. In several cases, strains sharing their SNP genotype had different SpeI macrorestriction profiles. The highly virulent CHA strain shared its SNP genotype with other strains that had different SpeI genotypes and which had been isolated from nonclinical habitats. The reference strain PAO1 also shared its SNP genotype with other strains that had different SpeI genotypes. The P. aeruginosa chromosome contains a conserved core genome and variable amounts of accessory DNA segments (genomic islands and islets) that can be horizontally transferred among strains. The fact that some SNP genotypes were overrepresented in the P. aeruginosa population studied and that several strains sharing an SNP genotype had different SpeI macrorestriction profiles supports the idea that changes occur at a higher rate in the accessory DNA segments than in the conserved core genome.