Online citations, reference lists, and bibliographies.
← Back to Search

Defects In Mitochondrial Protein Synthesis And Respiratory Chain Activity Segregate With The TRNA(Leu(UUR)) Mutation Associated With Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, And Strokelike Episodes.

M P King, Y Koga, M Davidson, E A Schon

Cite This
Download PDF
Analyze on Scholarcy
Cytoplasts from two unrelated patients with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) harboring an A----G transition at nucleotide position 3243 in the tRNA(Leu(UUR)) gene of the mitochondrial genome were fused with human cells lacking endogenous mitochondrial DNA (mtDNA) (rho 0 cells). Selected cybrid lines, containing less than 15 or greater than or equal to 95% mutated genomes, were examined for differences in genetic, biochemical, and morphological characteristics. Cybrids containing greater than or equal to 95% mutant mtDNA, but not those containing normal mtDNA, exhibited decreases in the rates of synthesis and in the steady-state levels of the mitochondrial translation products. In addition, NADH dehydrogenase subunit 1 (ND 1) exhibited a slightly altered mobility on polyacrylamide gel electrophoresis. The mutation also correlated with a severe respiratory chain deficiency. A small but consistent increase in the steady-state levels of an RNA transcript corresponding to 16S rRNA + tRNA(Leu(UUR)) + ND 1 genes was detected. However, there was no evidence of major errors in processing of the heavy-strand-encoded transcripts or of altered steady-state levels or ratios of mitochondrial rRNAs or mRNAs. These results provide evidence for a direct relationship between the tRNALeu(UUR) mutation and the pathogenesis of this mitochondrial disease.