Online citations, reference lists, and bibliographies.
← Back to Search

Nitrogen Fixation Ability Of Exopolysaccharide Synthesis Mutants Of Rhizobium Sp. Strain NGR234 And Rhizobium Trifolii Is Restored By The Addition Of Homologous Exopolysaccharides

S P Djordjevic, H Chen, M Batley, J W Redmond, B G Rolfe

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Several transposon Tn5-induced mutants of the broad-host-range Rhizobium sp. strain NGR234 produce little or no detectable acidic exopolysaccharide (EPS) and are unable to induce nitrogen-fixing nodules on Leucaena leucocephala var. Peru or siratro plants. The ability of these Exo- mutants to induce functioning nodules on Leucaena plants was restored by coinoculation with a Sym plasmid-cured (Nod- Exo+) derivative of parent strain NGR234, purified EPS from the parent strain, or the oligosaccharide from the EPS. Coinoculation with EPS or related oligosaccharide also resulted in formation of nitrogen-fixing nodules on siratro plants. In addition, an Exo- mutant (ANU437) of Rhizobium trifolii ANU794 was able to form nitrogen-fixing nodules on white clover in the presence of added EPS or related oligosaccharide from R. trifolii ANU843. These results demonstrate that the absence of Rhizobium EPSs can result in failure of effective symbiosis with both temperate and subtropical legumes.