Online citations, reference lists, and bibliographies.
← Back to Search

HIGH-FIELD LIMIT OF THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: A COMPARISON OF DIFFERENT PERTURBATION METHODS

LUIS L. BONILLA, JUAN S. SOLER

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
A reduced drift-diffusion (Smoluchowski–Poisson) equation is found for the electric charge in the high-field limit of the Vlasov–Poisson–Fokker–Planck system, both in one and three dimensions. The corresponding electric field satisfies a Burgers equation. Three methods are compared in the one-dimensional case: Hilbert expansion, Chapman–Enskog procedure and closure of the hierarchy of equations for the moments of the probability density. Of these methods, only the Chapman–Enskog method is able to systematically yield reduced equations containing terms of different order.