Online citations, reference lists, and bibliographies.
← Back to Search

DIFFUSION IN A CONTINUUM MODEL OF SELF-PROPELLED PARTICLES WITH ALIGNMENT INTERACTION

PIERRE DEGOND, TONG YANG

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
In this paper, we provide the O(ε) corrections to the hydrodynamic model derived by Degond and Motsch from a kinetic version of the model by Vicsek and co-authors describing flocking biological agents. The parameter ε stands for the ratio of the microscopic to the macroscopic scales. The O(ε) corrected model involves diffusion terms in both the mass and velocity equations as well as terms which are quadratic functions of the first-order derivatives of the density and velocity. The derivation method is based on the standard Chapman–Enskog theory, but is significantly more complex than usual due to both the non-isotropy of the fluid and the lack of momentum conservation.