Online citations, reference lists, and bibliographies.
← Back to Search

EFFECT OF MATERIAL MODEL SELECTION ON LATERAL IMPACT SIMULATIONS OF PELVIC COMPLEX

AILI QU, DONGMEI WANG, FANG WANG, QIU’GEN WANG

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Material mechanical behavior plays an important role in pelvic complex simulation under lateral impact. Aiming to investigate effects of material model selection on the responses of lateral impact simulations, a seating pelvic complex model was constructed. The model was subjected to a series of impacts at velocity of 3–10[Formula: see text]m/s, and two material models were, respectively, assigned to the pelvic bone to evaluate the accuracy of the simulation. The results showed that the pelvic response and fracture pattern with plastic–elastic material model agreed well with the literature, while linear elastic material model was dissatisfied factory, especially the pelvic response at low velocity deviated from most cadaveric test data. In addition, drastic change of arterial pressure was responsible for hemorrhages associated with pelvic fracture. Ligament loading sequence verified that the posterior pelvic ring bore the greatest amount of load during the impact. Based on the above findings, we concluded that a plastic–elastic with strain rate effect material model can improve the simulation accuracy of pelvic complex under lateral impact, and pelvic fracture pattern may help to estimate the parameters’ selection in impact simulation.