Online citations, reference lists, and bibliographies.
← Back to Search

Biomechanics Of Trabecular Bone.

T. M. Keaveny, E. Morgan, G. Niebur, O. Yeh
Published 2001 · Medicine, Biology

Cite This
Download PDF
Analyze on Scholarcy
Share
Trabecular bone is a complex material with substantial heterogeneity. Its elastic and strength properties vary widely across anatomic sites, and with aging and disease. Although these properties depend very much on density, the role of architecture and tissue material properties remain uncertain. It is interesting that the strains at which the bone fails are almost independent of density. Current work addresses the underlying structure-function relations for such behavior, as well as more complex mechanical behavior, such as multiaxial loading, time-dependent failure, and damage accumulation. A unique tool for studying such behavior is the microstructural class of finite element models, particularly the "high-resolution" models. It is expected that with continued progress in this field, substantial insight will be gained into such important problems as osteoporosis, bone fracture, bone remodeling, and design/analysis of bone-implant systems. This article reviews the state of the art in trabecular bone biomechanics, focusing on the mechanical aspects, and attempts to identify important areas of current and future research.
This paper references
10.1016/0021-9290(88)90257-6
Limitations of the continuum assumption in cancellous bone.
T. Harrigan (1988)
10.1016/S0021-9290(96)80006-6
A 3D damage model for trabecular bone based on fabric tensors.
P. Zysset (1996)
10.1016/8756-3282(86)90019-0
Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength.
L. Mosekilde (1986)
10.2106/00004623-199703000-00016
Age-Related Changes in the Compressive Strength of Cancellous Bone. The Relative Importance of Changes in Density and Trabecular Architecture*
R. Mccalden (1997)
10.2106/00004623-199910000-00027
Mechanical Behavior of Human Trabecular Bone after Overloading
T. M. Keaveny (1999)
Phenomenological anisotropic failure criterion
E. Wu (1974)
10.1016/S0021-9290(99)00099-8
Femoral strength is better predicted by finite element models than QCT and DXA.
D. Cody (1999)
10.1016/S0021-9290(00)00149-4
High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone.
G. Niebur (2000)
10.1016/0021-9290(90)90048-8
The fabric dependence of the orthotropic elastic constants of cancellous bone.
C. Turner (1990)
10.1016/0021-9290(88)90008-5
On the dependence of the elasticity and strength of cancellous bone on apparent density.
J. Rice (1988)
10.1016/S8756-3282(97)00122-1
Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique.
J. D. Beck (1997)
10.1097/00007632-198107000-00008
Microcalluses of the Trabeculae in Lumbar Vertebrae and Their Relation to the Bone Mineral Content
T. Hansson (1981)
10.1016/8756-3282(94)90900-8
Failure mechanisms in human vertebral cancellous bone.
D. Fyhrie (1994)
10.1111/j.1365-2818.1974.tb03878.x
The quantitative morphology of anisotropic trabecular bone
W. Whitehouse (1974)
Mechanical properties of human cancellous bone in the femoral head.Med
CM Schoenfeld (1974)
Vertebral fractures in the elderly
ER Myers (1996)
10.1115/1.3108433
Errors induced by off-axis measurement of the elastic properties of bone.
C. Turner (1988)
10.1016/S0142-9612(97)00073-2
Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation.
J. Rho (1997)
ANISOTROPIC MODEL OF CANCELLOUS BONE.
J. Williams (1979)
10.1016/0021-9290(95)80008-5
A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models.
B. van Rietbergen (1995)
10.1016/S0021-9290(98)00177-8
The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques.
C. Turner (1999)
10.1016/0739-6260(92)90076-P
Characterizing anisotropy: A new concept☆
L. M. Cruz-Orive (1992)
10.1016/S8756-3282(99)00092-7
Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study.
O. Yeh (1999)
10.1016/S8756-3282(99)00253-7
In vivo diffuse damage in human vertebral trabecular bone.
D. Vashishth (2000)
10.1002/JBMR.5650100213
In vivo, three‐dimensional microscopy of trabecular bone
J. Kinney (1995)
10.1016/S0021-9290(99)00062-7
Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging.
D. Ulrich (1999)
10.1016/S8756-3282(97)00100-2
Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.
M. Silva (1997)
10.1243/PIME_PROC_1990_204_074_02
Active Vibration Control of a Centrally Clamped Disc by Means of a Piezoelectric Polymer
J. Irons (1990)
10.1148/RADIOLOGY.179.3.2027972
Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis.
K. Faulkner (1991)
10.1002/JBMR.5650110218
Trabecular bone morphology from micro‐magnetic resonance imaging
J. Hipp (1996)
P1: GJB AR AR136-12.tex AR136-12 P1: GJB BIOMECHANICS OF TRABECULAR BONE AR AR136-12.tex AR136-12.SGM ARv2
(2001)
10.1016/8756-3282(87)90074-3
Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals.
L. Mosekilde (1987)
10.1115/1.2834757
Creep contributes to the fatigue behavior of bovine trabecular bone.
S. Bowman (1998)
10.1016/0021-9290(88)90200-X
Some viscoplastic characteristics of bovine and human cortical bone.
M. Fondrk (1988)
10.1177/002199837100500106
A General Theory of Strength for Anisotropic Materials
S. Tsai (1971)
10.1115/1.2834756
A global relationship between trabecular bone morphology and homogenized elastic properties.
P. Zysset (1998)
10.1115/1.3138584
Wolff's law of trabecular architecture at remodeling equilibrium.
S. Cowin (1986)
10.1002/JOR.1100160105
Relationships between bone morphology and bone elastic properties can be accurately quantified using high‐resolution computer reconstructions
B. van Rietbergen (1998)
10.1016/0021-9290(92)90240-2
On Wolff's law of trabecular architecture.
C. Turner (1992)
10.1016/0021-9290(94)90040-X
Mechanical behavior of damaged trabecular bone.
T. M. Keaveny (1994)
10.1016/S8756-3282(97)00298-6
Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
N. Fazzalari (1998)
10.1115/1.2800865
Convergence behavior of high-resolution finite element models of trabecular bone.
G. Niebur (1999)
Vertebral fractures in the elderly AR AR136-12.tex AR136-12
Er Myers (1996)
10.1016/S8756-3282(97)00007-0
Three-dimensional methods for quantification of cancellous bone architecture.
A. Odgaard (1997)
10.1016/0021-9290(96)00062-0
The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation.
C. M. Ford (1996)
10.1097/00007632-198701000-00011
A Study of the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Tissue Characteristics
T. Hansson (1987)
10.1016/0021-9290(94)90006-X
Compressive creep behavior of bovine trabecular bone.
S. Bowman (1994)
10.1097/00004728-199001000-00020
Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study.
J. C. Lotz (1990)
10.1016/S0021-9290(99)00111-6
Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur.
P. Zysset (1999)
10.1002/JBMR.5650100919
Microcallus formations of the cancellous bone: A quantitative analysis of the human spine
M. Hahn (1995)
10.1115/1.2798314
The accuracy of digital image-based finite element models.
R. Guldberg (1998)
Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement.
Engh Ca (1996)
10.1115/1.3168375
Yield behavior of bovine cancellous bone.
C. Turner (1989)
10.3109/17453678008990819
Mechanical property distributions in the cancellous bone of the human proximal femur.
T. Brown (1980)
10.1016/0167-6636(85)90012-2
A symmetry invariant formulation of the relationship between the elasticity tensor and the fabric tensor.
M. Moesen (2012)
Isotropy of uniaxial yield strains for bovine trabecular bone
Wcw Chang (1999)
10.1016/S0021-9290(98)00108-0
Numerical errors and uncertainties in finite-element modeling of trabecular bone.
A. J. Ladd (1998)
10.1016/S0021-9290(98)00057-8
Yield strain behavior of trabecular bone.
D. Kopperdahl (1998)
10.1016/0266-3538(87)90025-X
On phenomenological anisotropic failure criteria
W. Fan (1987)
Cellular Solids: Structure and Properties
L. J. Gibson (1997)
10.1002/JOR.1100090507
Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography
M. Ciarelli (1991)
10.1016/0021-9290(89)90066-3
Compressive axial strain distributions in cancellous bone specimens.
A. Odgaard (1989)
10.1016/0167-6636(95)00018-6
An alternative model for anisotropic elasticity based on fabric tensors
P. Zysset (1995)
10.1016/0021-9290(92)90255-Y
The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens.
F. Linde (1992)
10.1016/0021-9290(93)90059-N
Trabecular bone modulus and strength can depend on specimen geometry.
T. M. Keaveny (1993)
P1: GJB BIOMECHANICS OF TRABECULAR BONE 333
(2001)
Elastic and viscoelastic properties of trabecular bone by a compression testing approach.
F. Linde (1994)
10.1016/S0021-9290(97)00123-1
Prediction of femoral fracture load using automated finite element modeling.
J. Keyak (1998)
10.1097/00003086-199408000-00022
Correlation of Computed Finite Element Stresses to Bone Density After Remodeling Around Cementless Femoral Implants
H. Skinner (1994)
10.1016/8756-3282(90)90137-N
A model of vertebral trabecular bone architecture and its mechanical properties.
K. Jensen (1990)
Failure 19 Jun 2001 13:3 AR AR136-12.tex AR136-12
Dp Fyhrie (1994)
10.1016/0021-9290(91)90333-I
The underestimation of Young's modulus in compressive testing of cancellous bone specimens.
A. Odgaard (1991)
10.1016/0021-9290(83)90097-0
The mechanical properties of human tibial trabecular bone as a function of metaphyseal location.
S. Goldstein (1983)
10.1002/JOR.1100150115
Systematic and random errors in compression testing of trabecular bone
T. M. Keaveny (1997)
10.1243/PIME_PROC_1990_204_227_02
Effects of Structural Variation on Young's Modulus of Non-Human Cancellous Bone
R. Hodgskinson (1990)
10.1016/0021-9290(92)90051-2
A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
K. Choi (1992)
10.1115/1.2798051
Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone.
T. M. Keaveny (1999)
10.1007/BF00380706
Material properties of femoral cancellous bone in axial loading
H. Zilch (1980)
10.1016/0021-9290(89)90209-1
The effect of constraint on the mechanical behaviour of trabecular bone specimens.
F. Linde (1989)
10.2106/00004623-197759070-00021
The compressive behavior of bone as a two-phase porous structure.
D. Carter (1977)
10.1115/1.2895536
A 20-year perspective on the mechanical properties of trabecular bone.
T. M. Keaveny (1993)
10.3109/17453678909150127
Repair of trabecular fatigue fractures. Cadaver studies of the upper femur.
R. Benaissa (1989)
10.1023/A:1007575322693
The Anisotropic Hooke's Law for Cancellous Bone and Wood
Guo-Yu Yang (1998)
10.1016/S0021-9290(98)00150-X
Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
B. van Rietbergen (1999)
10.1016/S0021-9290(99)00045-7
The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
J. Kabel (1999)
10.1016/S0021-9290(96)80021-2
Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture.
B. van Rietbergen (1996)
10.3109/13813457309074441
A possible mechanism of Wolff's law: trabecular microfractures.
J. Pugh (1973)
10.1115/1.2895413
Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis.
J. C. Lotz (1991)
10.1115/1.2798339
A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone.
C. Fenech (1999)
10.1111/j.1365-2818.1990.tb03038.x
A direct method for fast three‐dimensional serial reconstruction
A. Odgaard (1990)
10.1016/0021-9290(93)90042-D
Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements.
J. Rho (1993)
10.1002/JOR.1100160305
Computed tomography‐based finite element analysis predicts failure loads and fracture patterns for vertebral sections
M. Silva (1998)
10.1016/0021-9290(92)90062-6
On the relationship between the orthotropic Young's moduli and fabric.
S. Cowin (1992)
10.1243/PIME_PROC_1990_204_240_02
The Effect of Variation in Structure on the Young's Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material
R. Hodgskinson (1990)
10.1016/S0021-9290(96)00113-3
Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
R. B. Martin (1997)
10.1016/0045-7825(87)90005-3
LARGE-SCALE VECTORIZED IMPLICIT CALCULATIONS IN SOLID MECHANICS ON A CRAY X-MP/48 UTILIZING EBE PRECONDITIONED CONJUGATE GRADIENTS.
T. J. Hughes (1986)
The relationship between the elasticity tensor and the fabric tensor.Mech
SC Cowin (1985)
16:15 Annual Reviews AR136-12-COLOR
(2001)
J. Biomed. Eng
Properties 19 Jun 2001 13:3 AR AR136-12.tex AR136-12
Jl Williams (1982)
10.1016/0141-5425(93)90066-8
Validation of an automated method of three-dimensional finite element modelling of bone.
J. Keyak (1993)
10.3109/17453678408992387
Trabecular microfractures in the acetabulum. Histologic studies in cadavers.
T. Ohtani (1984)
10.1002/JOR.1100080608
Evaluation of a microcomputed tomography system to study trabecular bone structure
J. Kuhn (1990)
10.1016/S0021-9290(01)00011-2
Dependence of yield strain of human trabecular bone on anatomic site.
E. Morgan (2001)
10.1016/S0021-9290(99)00115-3
The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling
C. Jacobs (1999)
10.1007/978-3-7091-2806-0
Continuum damage mechanics theory and applications
D. Krajcinovic (1987)
Mechanistic Approaches to Analysis of Trabecular Bone
Ph. D Tony M. Keaveny (1998)
Bone Mechanics. Boca Raton, FL: CRC. 313 pp
Sc Cowin (1989)
10.1016/0021-9290(83)90083-0
Multiaxial strength characteristics of trabecular bone.
J. Stone (1983)
10.1016/0021-9290(89)90067-5
X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens.
I. Hvid (1989)
10.1002/JOR.1100170418
Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric
W. C. Chang (1999)
10.1002/JOR.1100150522
Dependence of trabecular damage on mechanical strain
E. Wachtel (1997)
10.1359/jbmr.1997.12.1.6
Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures
D. Burr (1997)
10.1016/S8756-3282(97)00200-7
Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures.
S. Mori (1997)
Das Gesetz der Transformation der Knochen Berlin: Hirschwald 30. Wolff J. 1986. The Law of Bone Remodelling Berlin
J Wolff
10.1016/S8756-3282(98)00030-1
High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
S. Majumdar (1998)
10.1016/S8756-3282(98)00111-2
Three-dimensional confocal images of microdamage in cancellous bone.
N. Fazzalari (1998)
10.1016/0021-9290(94)90019-1
A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress.
S. J. Hollister (1994)
10.1302/0301-620X.79B6.7538
Age variations in the properties of human tibial trabecular bone
M. Ding (1997)
10.1002/JBMR.5650070214
Incidence of clinically diagnosed vertebral fractures: A population‐based study in rochester, minnesota, 1985‐1989
C. Cooper (1992)
10.1111/j.1365-2818.1974.tb03879.x
A stereological method for calculating internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions
W. Whitehouse (1974)
10.1055/S-0028-1144106
Das Gesetz der Transformation der Knochen
J. Wolff (1893)
10.1002/JOR.1100180502
Biomechanical consequences of an isolated overload on the human vertebral body
D. Kopperdahl (2000)
10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.0.CO;2-A
COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA
B. V. Rietbergen (1996)
10.1016/0021-9290(94)90203-8
Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
X. E. Guo (1994)
10.1016/S0021-9290(96)00177-7
Fabric and elastic principal directions of cancellous bone are closely related.
A. Odgaard (1997)
10.1016/S0021-9290(98)00110-9
Human vertebral body apparent and hard tissue stiffness.
F. Hou (1998)
10.1016/S0020-7403(96)00065-3
The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids
M. Silva (1997)
10.1016/S0021-9290(99)00152-9
Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories.
J. Keyak (2000)
10.1302/0301-620X.79B6.0790995
Age variations in the properties of human tibial trabecular bone.
M. Ding (1997)
10.1016/S8756-3282(99)00190-8
Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture.
J. Kabel (1999)
10.1002/JOR.1100160516
Finite‐element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus
A. J. Ladd (1998)
10.1016/0021-9290(93)90021-6
Theoretical analysis of the experimental artifact in trabecular bone compressive modulus.
T. M. Keaveny (1993)
10.1115/1.1289996
A cellular solid model for modulus reduction due to resorption of trabeculae in bone.
S. Vajjhala (2000)
10.1016/0021-9290(94)90054-X
Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.
T. M. Keaveny (1994)
10.1016/0021-9290(93)90009-4
Compressive fatigue behavior of bovine trabecular bone.
M. C. Michel (1993)
10.1016/0021-9290(94)90014-0
The relationship between the structural and orthogonal compressive properties of trabecular bone.
R. Goulet (1994)
10.1016/0021-9290(87)90023-6
The mechanical properties of trabecular bone: dependence on anatomic location and function.
S. Goldstein (1987)
10.1115/1.2895412
Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
J. C. Lotz (1991)
10.1007/BF00540446
Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor
T. Harrigan (1984)
13:3 AR AR136-12.tex AR136-12.SGM ARv2(2001/05/10)P1: GJB
JD Beck (2001)
10.1111/j.1365-2818.1990.tb02955.x
Estimation of structural anisotropy based on volume orientation. A new concept
A. Odgaard (1990)
10.1016/S1350-4533(98)00007-1
Mechanical properties and the hierarchical structure of bone.
J. Rho (1998)



This paper is referenced by
Biological and medical physics, biomedical engineering
I. Herman (2014)
Effects of Fusion Mass Density and Fusion Location on the Strength of a Lumbar Interbody Fusion
Cassi Elizabeth Shelly (2004)
10.1016/S8756-3282(03)00214-X
On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure.
J. Stölken (2003)
10.1111/joa.12957
Trabecular architecture of the great ape and human femoral head
Leoni Georgiou (2019)
10.1016/j.jhsa.2011.05.031
Radius fracture repair using volumetrically expanding polyurethane bone cement.
J. Boxberger (2011)
10.1002/ar.23978
Trabecular Bone Structural Variation in the Proximal Sacrum Among Primates
G. A. Russo (2018)
10.1007/S00466-006-0082-5
Constitutive Modeling and Algorithmic Implementation of a Plasticity-like Model for Trabecular Bone Structures
A. Gupta (2007)
Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials
Maziar Shah Mohammadi (2012)
10.1016/j.jmbbm.2013.09.014
The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression.
F. Gillard (2014)
10.1051/MATECCONF/201710813002
Effect of using different types of methods for the derivation of elastic modulus of bone - A critical survey
Zartasha Mustansar (2017)
10.1115/1.4034831
A Computational Efficient Method to Assess the Sensitivity of Finite-Element Models: An Illustration With the Hemipelvis.
Dermot O'Rourke (2016)
Selection of modelling level of detail for incorporating stress analysis into evolutionary robotics simulations of extinct and extant vertebrates
Zartasha Mustansar (2015)
10.7912/C2Z31J
Finite Element Analysis of and Multiscale Skeletal Tissue Mechanics Concerning a Single Dental Implant Site
Timothy James Sego (2016)
10.1016/j.jhevol.2018.05.004
Trabecular bone patterning across the human hand.
Nicholas B Stephens (2018)
10.1002/adma.201303412
25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy.
Won-Gyu Bae (2014)
Upper cervical spine kinematic response and injury prediction
D. Cronin (2012)
10.1016/J.BONE.2004.09.023
An orientation distribution function for trabecular bone.
J. Kinney (2005)
10.1016/J.JBIOMECH.2004.02.033
A time-dependent healing function for immediate loaded implants.
W. Winter (2004)
10.1016/j.dental.2008.11.002
Dental implants press fit phenomena: biomechanical analysis considering bone inelastic response.
A. Natali (2009)
10.1089/ten.TEC.2011.0289
Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
Eun Ji Chung (2012)
Designing Bio-mimetic Variational Porosity for Tissue Scaffolds
A. K. M. Bashirul Khoda (2012)
10.4271/2007-01-1161
Validation of a finite element human model for prediction of rib fractures
J. Mordaka (2007)
10.1007/978-0-387-68831-2_5
CAD Assembly Process for Bone Replacement Scaffolds in Computer-Aided Tissue Engineering
M. Wettergreen (2008)
10.1016/j.jmbbm.2019.06.012
Microstructure-based numerical computational method for the insertion torque of dental implant.
Luli Li (2019)
10.1007/s10237-019-01225-2
Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra
Y. Wu (2019)
10.1080/17452750801911352
Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering
B. Bucklen (2008)
10.1002/jor.23721
Patient‐specific in silico models can quantify primary implant stability in elderly human bone
J. Steiner (2018)
The Experimental Assessment of Hexagonal Porous Structure in Vertebroplasty and Kyphoplasty
Seyed Aref Hosseini Faradonbeh (2015)
10.3348/JKSR.2011.64.5.481
Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry
S. B. An (2011)
10.1111/j.1469-7580.2009.01073.x
Anticipating bipedalism: trabecular organization in the newborn ilium
Craig A. Cunningham (2009)
10.1002/jbmr.378
Better skeletal microstructure confers greater mechanical advantages in Chinese‐American women versus white women
X. Liu (2011)
10.3109/17453671003619037
Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues
M. Ding (2010)
See more
Semantic Scholar Logo Some data provided by SemanticScholar