Online citations, reference lists, and bibliographies.
← Back to Search

Roles Of Arbuscular Mycorrhizas In Plant Nutrition And Growth: New Paradigms From Cellular To Ecosystem Scales.

Sally E. Smith, F. A. Smith
Published 2011 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
This paper references
Études sur les mycorrhizes endotrophes
I. Gallaud (1905)
10.1002/PS.2780040316
Phosphate flow into mycorrhizal roots
F. Sanders (1973)
Phosphate flow into mycorrhizal
FE Sanders (1973)
Soil chemistry of phosphorus and mycorrhizal effects on plant growth
PB Tinker (1975)
10.1111/J.1469-8137.1976.TB01477.X
NITROGEN ASSIMILATION AND TRANSPORT IN VASCULAR LAND PLANTS IN RELATION TO INTRACELLULAR pH REGULATION
J. Raven (1976)
10.1111/j.1469-185X.1980.tb00701.x
MYCORRHIZAS OF AUTOTROPHIC HIGHER PLANTS
S. Smith (1980)
Mycorrhizas
H de Kroon (1980)
10.1111/J.1469-8137.1982.TB03347.X
INTERACTION OF LIGHT INTENSITY AND SOIL TEMPERATURE WITH PHOSPHORUS INHIBITION OF VESICULAR-ARBUSCULAR MYCORRHIZA FORMATION
J. Graham (1982)
10.1111/J.1469-8137.1983.TB03506.X
HYPHAL UPTAKE AND TRANSPORT OF NITROGEN FROM TWO 15N‐LABELLED SOURCES BY GLOMUS MOSSEAE, A VESICULAR‐ARBUSCULAR MYCORRHIZAL FUNGUS *
R. N. Ames (1983)
10.1111/J.1399-3054.1983.TB02783.X
Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: The effect of phosphorus on host plant‐endophyte interactions
G. Bethlenfalvay (1983)
10.1111/J.1469-8137.1985.TB03651.X
ACTIVITY OF GLUTAMINE SYNTHETASE AND GLUTAMATE DEHYDROGENASE IN TRIFOLIUM SUBTERRANEUM L. AND ALLIUM CEPA L: EFFECTS OF MYCORRHIZAL INFECTION AND PHOSPHATE NUTRITION
S. Smith (1985)
10.1111/J.1469-8137.1986.TB00621.X
EFFECTS OF PHOSPHATE SUPPLY AND INOCULATION WITH A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS ON THE DEATH OF THE ROOT CORTEX OF WHEAT, RAPE AND SUBTERRANEAN CLOVER
W.J. MacLEOD (1986)
10.2307/2260650
Mineral Nutrition of Higher Plants
H. Marschner (1986)
10.1094/PHYTO-76-688
The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease
H. S. Modjo (1986)
10.1111/J.1469-8137.1986.TB00622.X
EFFECTS OF MYCORRHIZAL INFECTION ON PLANT GROWTH, NITROGEN AND PHOSPHORUS NUTRITION IN GLASSHOUSE‐GROWN ALLIUM CEPAL.
S. Smith (1986)
10.1111/J.1469-8137.1986.TB00601.X
THE DEVELOPMENT OF MYCORRHIZAL ROOT SYSTEMS IN TRIFOLIUM SUBTERRANEUM L.: GROWTH OF ROOTS AND THE UNIFORMITY OF SPATIAL DISTRIBUTION OF MYCORRHIZAL INFECTION UNITS IN YOUNG PLANTS
S. Smith (1986)
10.1111/J.1469-8137.1988.TB04167.X
Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition.
C. L. Son (1988)
10.1146/ANNUREV.PP.39.060188.001253
Physiological Interactions Between Symbionts in Vesicular-Arbuscular Mycorrhizal Plants
S. E. Smith (1988)
10.1111/J.1469-8137.1990.TB04718.X
EFFECT OF VA MYCORRHIZAL FUNGI AND RHIZOSPHERE MICROORGANISMS ON ROOT AND SHOOT MORPHOLOGY, GROWTH AND WATER RELATIONS IN MAIZE
S. K. Kothari (1990)
10.1071/PP9900177
Phosphate Uptake and Arbuscular Activity in Mycorrhizal Allium cepa L.: Effects of Photon Irradiance and Phosphate Nutrition
S. Smith (1990)
10.1111/J.1469-8137.1990.TB00370.X
Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport.
S E Smith (1990)
10.1111/J.1469-8137.1991.TB00945.X
Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V, Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces ?
V. Gianinazzi-Pearson (1991)
10.1111/J.1469-8137.1991.TB00039.X
Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium
X. Li (1991)
10.1111/J.1469-8137.1992.TB04232.X
Hyphal transport of 15 N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N.
A. Johansen (1992)
10.1111/J.1469-8137.1992.TB01800.X
External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.
I. Jakobsen (1992)
10.1139/B92-265
Water and nutrient translocation by hyphae of Glomus mosseae
E. George (1992)
10.1111/J.1469-8137.1993.TB03797.X
External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III: Hyphal transport of 32P and 15N
A. Johansen (1993)
10.1139/B94-126
Mycorrhizal activity in warm- and cool-season grasses: variation in nutrient-uptake strategies
B. Hetrick (1994)
10.1111/J.1469-8137.1994.TB07536.X
Improved nitrogen uptake and transport from 15N‐labelled nitrate by external hyphae of arbuscular mycorrhiza under water‐stressed conditions
R. Tobar (1994)
10.1016/0929-1393(94)90004-3
A mycorrhizal pathogen (Glomus macrocarpum Tul. & Tul.) of tobacco: effects of long- and short-term cropping on the mycorrhizal fungal community and stunt disease
Baozhu Guo (1994)
10.1111/J.1469-8137.1995.TB03029.X
Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant
S. Ravnskov (1995)
10.1016/S0169-5347(00)89157-0
Multi-functionality and biodiversity in arbuscular mycorrhizas.
K. Newsham (1995)
10.3109/07388559509147412
Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil
E. George (1995)
10.1038/378626A0
A phosphate transporter from the mycorrhizal fungus Glomus versiforme
M. Harrison (1995)
10.1139/B95-391
Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure
R. Francis (1995)
10.1111/j.1469-8137.1996.tb01894.x
Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture.
B. Bago (1996)
10.1111/J.1469-8137.1996.TB01939.X
Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices
A. Johansen (1996)
10.1046/J.1469-8137.1997.00848.X
Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses.
F. A. Smith (1997)
10.1046/J.1469-8137.1997.00729.X
Functioning of mycorrhizal associations along the mutualism–parasitism continuum*
N. Johnson (1997)
10.1002/JPLN.19971600231
Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.)
B. Bago (1997)
Highly cited review on arbuscular mycorrhizal C–P trade and mycorrhizal growth response; conclusions may now need re-evaluation
NC Johnson (1997)
10.1007/s004250050394
Functional analysis and cell-specific expression of a phosphate transporter from tomato
P. Daram (1998)
10.1046/J.1469-8137.1998.00199.X
Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi
B. Bago (1998)
10.1094/MPMI.1998.11.6.439
Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza.
M. Kaldorf (1998)
10.1104/PP.116.2.447
Phosphorus Uptake by Plants: From Soil to Cell
Schachtman (1998)
10.1007/978-3-662-03779-9_13
Transport of Phosphorus and Carbon in Arbuscular Mycorrhizas
I. Jakobsen (1999)
10.1128/AEM.65.12.5604-5606.1999
Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, Gigaspora margarita
M. Solaiman (1999)
10.1046/J.1469-8137.2000.00710.X
Functional complementarity in the arbuscular mycorrhizal symbiosis.
R. Koide (2000)
10.1046/J.1469-8137.2000.00602.X
An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil.
A. Hodge (2000)
10.1046/J.1469-8137.2000.00695.X
Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula
F. Smith (2000)
10.1007/s004250000324
Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots
M. Guttenberger (2000)
10.1007/s002940050017
The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae
N. Ferrol (2000)
10.1046/J.1469-8137.2000.00615.X
Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi
P. Mäder (2000)
10.1007/s004250000323
Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco
V. Gianinazzi-Pearson (2000)
15N transfer to plants via arbuscular mycorrhizal fungi in compartmented pots
P Mäder (2000)
Negative mycorrhizal growth responses in wheat are not necessarily associated with rapid or high arbuscular mycorrhizal colonization
JH Graham (2000)
10.1038/35095041
An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
A. Hodge (2001)
10.1046/J.1469-8137.2001.00016.X
Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis?
B. Bago (2001)
10.1046/J.0028-646X.2001.00191.X
Morphology of arbuscular mycorrhizas is influenced by fungal identity
T. Cavagnaro (2001)
10.1046/J.0028-646X.2001.00182.X
Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation
M. Solaiman (2001)
10.1006/ANBO.2000.1305
Reduced15N-nitrogen Transport Through Arbuscular Mycorrhizal Hyphae to Triticum aestivum L. Supplied with Ammonium vs. Nitrate Nutrition
Heidi-Jayne Hawkins (2001)
10.1046/J.0028-646X.2001.00200.X
Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil.
A. Hodge (2001)
10.1105/tpc.004861
A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861.
M. Harrison (2002)
10.1055/S-2002-37407
Mtha1, a Plasma Membrane H+-ATPase Gene from Medicago truncatula, Shows Arbuscule-Specific Induced Expression in Mycorrhizal Tissue
F. Krajinski (2002)
10.1007/s00572-002-0205-6
Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil
Y. Zhu (2002)
10.1006/MBEN.2001.0207
Metabolic engineering of plants: the role of membrane transport.
R. Kunze (2002)
10.1007/978-3-540-38364-2_4
Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment
P. Olsson (2002)
10.1051/AGRO:2003013
Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize
J. Jansa (2003)
10.1046/J.1461-0248.2003.00444.X
The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity
C. Urcelay (2003)
10.1046/J.1469-8137.2003.00884.X
Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study.
M. Ryan (2003)
10.1890/02-0413
VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI
J. Klironomos (2003)
10.1046/J.1469-8137.2003.00654.X
Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis.
T. Cavagnaro (2003)
10.1046/J.1469-8137.2003.00704.X
Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?
D. Read (2003)
10.1242/jcs.00615
Restricted spatial expression of a high-affinity phosphate transporter in potato roots
R. Gordon-Weeks (2003)
10.1104/pp.103.024380
Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses1
S. Smith (2003)
Mycorrhizas. In Root Ecology, ed
FA Smith (2003)
10.1016/J.FORECO.2004.03.010
Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution
W. McDowell (2004)
10.1007/BF00336518
Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate
A. Johansen (2004)
10.1023/A:1022932414788
Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes
E. Drew (2004)
10.1139/W04-009
Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system.
J. Toussaint (2004)
10.1007/s11104-004-1611-7
Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi
M. Ryan (2004)
10.1073/PNAS.0306074101
Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis.
V. Karandashov (2004)
10.1111/J.1469-8137.2004.00967.X
Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato.
T. Cavagnaro (2004)
10.1111/J.1469-8137.2004.01048.X
Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo31 P NMR spectroscopy.
N. Viereck (2004)
10.1111/J.1469-8137.2004.01169.X
High functional diversity within species of arbuscular mycorrhizal fungi.
Lisa Munkvold (2004)
10.1023/A:1026500810385
Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi
Heidi-Jayne Hawkins (2004)
10.1111/J.1469-8137.2004.01095.X
The Arum-Paris continuum of mycorrhizal symbioses.
S. Dickson (2004)
10.1016/J.PBI.2004.05.011
Molecular genetics of the arbuscular mycorrhizal symbiosis.
M. Parniske (2004)
10.1023/A:1004709209009
Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi
J. Graham (2004)
10.1139/B04-110
Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms?
M. Jones (2004)
10.1023/A:1020258325010
P metabolism and transport in AM fungi
T. Ezawa (2004)
10.1111/J.1469-8137.2004.01163.X
Hyphal fusion to plant species connections - giant mycelia and community nutrient flow.
I. Jakobsen (2004)
10.1007/BF00012010
The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use
S. Smith (2004)
10.1023/A:1020207631893
Is there a role for arbuscular mycorrhizal fungi in production agriculture?
M. Ryan (2004)
10.1071/FP03159
Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates.
A. Rae (2004)
10.1111/J.1469-8137.2004.01039.X
Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake
S. Smith (2004)
Quantification of mycorrhizal pathway and direct pathway to plant P uptake in compartmented pots using 33P
SE Smith (2004)
10.1007/BF02178744
Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model
M. Silberbush (2005)
10.1111/J.1469-8137.2005.01536.X
The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis.
H. Jin (2005)
10.1007/s11104-005-7082-7
Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply
H. Y. Li (2005)
10.1007/s00572-005-0033-6
Phylogenetic distribution and evolution of mycorrhizas in land plants
B. Wang (2005)
10.1111/J.1365-3040.2005.01360.X
Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied
Yoko Tanaka (2005)
10.1146/ANNUREV.MICRO.58.030603.123749
Signaling in the arbuscular mycorrhizal symbiosis.
M. Harrison (2005)
10.1007/s11104-005-5847-7
Arbuscular Mycorrhizas, Microbial Communities, Nutrient Availability, and Soil Aggregates in Organic Tomato Production
T. Cavagnaro (2005)
10.1080/11263500500056799
The interface compartment in arbuscular mycorrhizae: A special type of plant cell wall?
R. Balestrini (2005)
10.1111/J.1365-313X.2005.02364.X
The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species.
R. Nagy (2005)
10.1111/J.1469-8137.2005.01455.X
Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture.
H. Reynolds (2005)
10.1105/tpc.105.035410
Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]
A. Genre (2005)
10.1111/J.1469-8137.2005.01523.X
Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus.
K. Poulsen (2005)
10.1038/nature03610
Nitrogen transfer in the arbuscular mycorrhizal symbiosis
M. Govindarajulu (2005)
Detailed biochemical study of N transfer from extraradical mycelium to intraradical mycelium in monoxenic root cultures
H Jin (2005)
Elegant demonstration of cellular processes leading to arbuscular mycorrhizal colonization of roots
A Genre (2005)
10.1104/pp.106.090522
Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi1[OA]
C. Cruz (2006)
10.1111/J.1469-8137.2006.01846.X
Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses.
Huiying Li (2006)
10.1016/J.FGB.2005.10.005
GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices.
Agustín López-Pedrosa (2006)
10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation.
E. Kiers (2006)
10.1111/J.1462-2920.2006.01070.X
Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions.
H. D. de Boulois (2006)
10.1111/J.1469-8137.2006.01839.X
Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks.
L. Avio (2006)
10.1111/J.1469-8137.2006.01840.X
A journey through signaling in arbuscular mycorrhizal symbioses 2006.
U. Paszkowski (2006)
10.1007/s00572-006-0101-6
Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants
G. Rosewarne (2006)
10.1111/J.1469-8137.2006.01861.X
What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function.
A. Fitter (2006)
10.1007/s00572-006-0094-1
Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas
D. Janos (2006)
10.1111/J.1469-8137.2006.01935.X
Functional biology of plant phosphate uptake at root and mycorrhiza interfaces.
M. Bucher (2007)
10.1094/MPMI-20-9-1055
Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.
R. Balestrini (2007)
10.1071/FP06242
Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas.
M. Ryan (2007)
10.1093/JXB/ERM096
Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression.
G. Xu (2007)
10.1007/s00572-007-0130-9
Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next?
S. Dickson (2007)
10.1111/j.1365-3040.2006.01617.x
Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.
Hélène Javot (2007)
10.1073/pnas.0608136104
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis
Hélène Javot (2007)
10.1126/SCIENCE.1146487
Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal Symbiosis
D. Drissner (2007)
Molecular focus on phosphate uptake in mycorrhizal plants
H Javot (2007)
Valuable review of present knowledge of P uptake from a molecular perspective
M. Bucher (2007)
10.1146/annurev.arplant.59.032607.092932
Roots, nitrogen transformations, and ecosystem services.
L. Jackson (2008)
10.1111/j.1469-8137.2008.02410.x
Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?
H. Li (2008)
10.1111/J.1469-8137.2007.02268.X
A new model of carbon and phosphorus transfers in arbuscular mycorrhizas.
Frank C. Landis (2008)
10.1016/j.tplants.2008.07.001
Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective.
P. Bonfante (2008)
10.1111/J.1469-8137.2007.02294.X
Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi?
J. Jansa (2008)
10.1111/j.1469-8137.2008.02623.x
Underground resource allocation between individual networks of mycorrhizal fungi.
B. L. Mikkelsen (2008)
10.1071/FP07202
Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser.
H. Li (2008)
10.1104/pp.108.117820
Characterization of an Amino Acid Permease from the Endomycorrhizal Fungus Glomus mosseae1[W]
Gilda Cappellazzo (2008)
10.1111/j.1469-8137.2008.02608.x
Scaling-up evaluation of field functioning of arbuscular mycorrhizal fungi.
J. Graham (2008)
10.1038/nrmicro1987
Arbuscular mycorrhiza: the mother of plant root endosymbioses
M. Parniske (2008)
10.1105/tpc.108.059014
Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota[W]
A. Genre (2008)
10.1104/pp.109.136390
A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1
Mike Guether (2009)
10.1007/s11104-009-0089-8
Arsenic uptake and toxicity in plants: integrating mycorrhizal influences
Sally E. Smith (2009)
10.1111/j.1469-8137.2008.02753.x
More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses.
F. Smith (2009)
10.1111/j.1469-8137.2008.02720.x
Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.
E. J. Grace (2009)
10.1111/j.1469-8137.2009.03009.x
Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway.
H. M. Christophersen (2009)
10.1007/s00572-009-0271-0
Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa
M. Orfanoudakis (2009)
10.1104/pp.109.141879
Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis1[W][OA]
N. Pumplin (2009)
10.1111/j.1469-8137.2008.02630.x
Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material.
Joanne Leigh (2009)
10.1111/j.1469-8137.2008.02721.x
Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated.
R. Nagy (2009)
10.1007/978-3-540-87978-7_7
Deciphering the Arbuscular Mycorrhizal Pathway of P Uptake in Non-responsive Plant Species
E. J. Grace (2009)
10.1111/j.1469-8137.2009.03168.x
Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus.
N. Hijikata (2010)
10.1093/mp/ssp120
Regulation of phosphate starvation responses in plants: signaling players and cross-talks.
Hatem Rouached (2010)
10.1111/j.1469-8137.2009.03110.x
Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales.
N. Johnson (2010)
10.1094/MPMI-23-7-0915
Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
Anja Branscheid (2010)
10.1186/1471-2229-10-75
Tomato root transcriptome response to a nitrogen-enriched soil patch
Daniel R. Ruzicka (2010)
10.1016/J.FUNECO.2009.07.003
Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency
Nadja Feddermann (2010)
10.1111/j.1399-3054.2009.01320.x
Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum.
M. Gu (2010)
10.1111/j.1469-8137.2009.03162.x
Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition.
E. Facelli (2010)
10.1104/pp.109.152009
Channel-Like Characteristics of the Low-Affinity Barley Phosphate Transporter PHT1;6 When Expressed in Xenopus Oocytes1[W][OA]
C. P. Preuss (2010)
tomato plants
AB Arpat (2010)
10.1016/b978-0-12-652840-4.x5000-1
Mycorrhizal Symbiosis
O. Alizadeh (2011)



This paper is referenced by
10.1007/s00572-021-01031-8
Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition
R. Ingraffia (2021)
10.1007/978-3-030-66587-6_17
Role of Phosphate-Solubilising Microorganisms in Agricultural Development
G. Jilani (2021)
10.3389/fpls.2021.647372
Interactive Effects of Mycorrhizae, Soil Phosphorus, and Light on Growth and Induction and Priming of Defense in Plantago lanceolata
L. Qu (2021)
10.1016/J.APSOIL.2021.104144
Short-term nitrogen and phosphorus additions rather than mycorrhizal suppression determine plant community composition and productivity in desert steppe
Xin Yang (2021)
10.1016/J.SCITOTENV.2021.146461
Lime-rich and lime-poor coastal dunes: Natural blowout activity differs with sensitivity to high N deposition through differences in P availability to the vegetation.
A. Kooijman (2021)
10.1007/978-3-030-71206-8_21
Arbuscular Mycorrhiza in Sustainable Plant Nitrogen Nutrition: Mechanisms and Impact
Ravichandran Koshila Ravi (2021)
10.3389/fagro.2021.731184
Mycorrhizal Symbioses Enhance Competitive Weed Growth in Biochar and Nutrient-Amended Soils
Chase M. O’Neil (2021)
10.5194/BG-18-4143-2021
A novel representation of biological nitrogen fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land model (GFDL LM4.1-BNF)
Sian Kou-Giesbrecht (2021)
10.1093/treephys/tpab059
Tree species rather than type of mycorrhizal association drives inorganic and organic nitrogen acquisition in tree-tree interactions.
R. Reuter (2021)
10.3390/microorganisms9061203
Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Medicago truncatula Root and Deliver Extra Pb to Colonized Root Segment
Haoqiang Zhang (2021)
10.1007/S11104-021-04831-1
Arbuscular mycorrhizal fungal colonization and soil pH induced by nitrogen and phosphorus additions affects leaf C:N:P stoichiometry in Chinese fir (Cunninghamia lanceolata) forests
Meihua Liu (2021)
10.1007/978-3-030-64323-2_17
Importance of Mycorrhizae in Crop Productivity
M. F. Seleiman (2021)
10.3390/AGRICULTURE11020157
Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility
J. Trap (2021)
10.1016/J.APSOIL.2021.104013
Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent
Athanasia Kavadia (2021)
10.3389/fpls.2021.628769
Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) and Rhizobacteria (Bacillus subtilis) Can Improve the Clonal Propagation and Development of Teak for Commercial Plantings
F. S. Alexandre (2021)
10.26717/bjstr.2021.36.005834
Role of Mycorrhizal Pathways in Plant Phosphorous and Zinc Uptake
Parashuram Bhantana (2021)
10.1016/b978-0-12-821394-0.00006-8
The role of fungi in abiotic stress tolerance of plants
Sushma (2021)
10.9734/AJSSPN/2021/V7I330113
Glomus intraradices and Funneliformis mosseae am Strains Influence on Soil Physical, Biological and Chemical Characteristics in Tea Plantations in Kenya
Awa Chelangat (2021)
10.1016/J.APSOIL.2021.104097
Root and arbuscular mycorrhizal effects on soil nutrient loss are modulated by soil texture
C. T. Tran (2021)
10.1093/PLPHYS/KIAB328
N enrichment affects the arbuscular mycorrhizal fungi-mediated relationship between a C4 grass and a legume
Hongfei Liu (2021)
10.1016/J.RHISPH.2021.100312
Divergent root P uptake strategies of three temperate grassland forage species
Tomás Chippano (2021)
10.3390/AGRONOMY11071402
The Effect of Mycorrhizal Fungi and PGPR on Tree Nutritional Status and Growth in Organic Apple Production
Sebastian Przybyłko (2021)
10.1080/00103624.2021.1879117
Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth, phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions
Nurudeen Olatunbosun Adeyemi (2021)
10.1016/B978-0-12-822122-8.00009-1
Potential effect of microbial biostimulants in sustainable vegetable production
M. Seymen (2021)
10.1111/tpj.15434
Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi as influenced by soil phosphorus availability using a 13 C and 15 N dual-labelled organic patch.
Hongfei Liu (2021)
10.1016/J.RHISPH.2021.100414
Soil N2O emissions are more sensitive to phosphorus addition and plant presence than to nitrogen addition and arbuscular mycorrhizal fungal inoculation
Yawen Shen (2021)
10.1038/s41438-021-00524-z
Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization
Dong Huang (2021)
10.1007/S00344-021-10392-5
Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants
Bhaskar Dowarah (2021)
10.1016/J.APSOIL.2021.104060
Shading mediates the response of mycorrhizal maize (Zea mays L.) seedlings under varying levels of phosphorus
Ming Lang (2021)
10.3389/fpls.2021.725939
Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas
Cuc Thi Nguyen (2021)
10.1007/S11104-021-04848-6
Soil biota suppress maize growth and influence root traits under continuous monoculture
Lin Mao (2021)
10.1007/s00572-021-01033-6
Carbon for nutrient exchange between Lycopodiella inundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2
Grace A. Hoysted (2021)
See more
Semantic Scholar Logo Some data provided by SemanticScholar