Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Rewriting The Genetic Code.

Takahito Mukai, M. Lajoie, M. Englert, D. Söll
Published 2017 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
This paper references
10.1021/JA000595Y
A New Functional Suppressor tRNA/ Aminoacyl-tRNA Synthetase Pair for the in Vivo Incorporation of Unnatural Amino Acids into Proteins
L. Wang (2000)
10.1016/j.protis.2012.08.001
Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi.
S. Karpov (2013)
10.1073/pnas.0803531105
Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog
K. Oki (2008)
10.1016/S0300-9084(97)86715-6
Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2.
M. Uno (1996)
10.1101/gr.200931.115
A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.
Stefanie Mühlhausen (2016)
10.1021/JA0284153
Generation of a bacterium with a 21 amino acid genetic code.
R. Mehl (2003)
10.1038/nmeth.2595
Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity
Zheng Xiang (2013)
10.1016/j.molcel.2015.05.035
Codon Bias as a Means to Fine-Tune Gene Expression.
Tessa E. F. Quax (2015)
10.1016/j.bbrc.2011.07.020
Genetic-code evolution for protein synthesis with non-natural amino acids.
Takahito Mukai (2011)
10.1021/cb4001662
An expanded genetic code in mammalian cells with a functional quadruplet codon.
W. Niu (2013)
10.1126/science.aaa2424
Trapping a transition state in a computationally designed protein bottle
A. D. Pearson (2015)
10.1093/nar/gkv1090
Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects
Rebecca M. Lennen (2016)
10.1021/JA040175Z
A genetically encoded photocaged amino acid.
N. Wu (2004)
10.1073/PNAS.96.9.4780
Progress toward the evolution of an organism with an expanded genetic code.
D. Liu (1999)
10.1111/j.1462-2920.2007.01430.x
Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads.
A. P. de Koning (2008)
10.1021/acssynbio.6b00145
Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
A. Maranhao (2017)
10.1073/PNAS.82.8.2306
UGA is read as tryptophan in Mycoplasma capricolum.
F. Yamao (1985)
10.1002/cbic.201500174
Liposome‐Based in Vitro Evolution of Aminoacyl‐tRNA Synthetase for Enhanced Pyrrolysine Derivative Incorporation
A. Uyeda (2015)
10.1016/j.cub.2016.08.005
Genomics: Evolution of the Genetic Code
P. Keeling (2016)
10.1002/ANIE.200704074
Addition of an α-Hydroxy Acid to the Genetic Code of Bacteria†
J. Guo (2008)
10.1126/science.1205822
Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement
Farren J. Isaacs (2011)
10.1002/CHIN.201545292
Discovering Functional, Non-proteinogenic Amino Acid Containing, Peptides Using Genetic Code Reprogramming
Joseph M Rogers (2015)
10.1073/pnas.1303090110
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota
J. H. Campbell (2013)
Designing logical codon reassignment—expanding the chemistry in biology
A Dumas (2015)
10.1038/srep09699
Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon
Takahito Mukai (2015)
10.1128/EC.00075-13
An Expanded Genetic Code in Candida albicans To Study Protein-Protein Interactions In Vivo
Silke Palzer (2013)
10.1271/bbb.110653
Pyrrolysine Analogs as Substrates for Bacterial Pyrrolysyl-tRNA Synthetase in Vitro and in Vivo
H. Katayama (2012)
10.1038/nchembio.2099
NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met).
S. Nakano (2016)
10.1021/ja106416g
Improving a natural enzyme activity through incorporation of unnatural amino acids.
Isaac N Ugwumba (2011)
10.1021/ja209008w
Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens.
S. Lin (2011)
10.1021/acssynbio.5b00197
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
J. M. Ho (2016)
10.1126/science.1241460
Probing the Limits of Genetic Recoding in Essential Genes
M. Lajoie (2013)
10.1126/science.1164748
Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon
A. Turanov (2009)
10.1038/srep21898
Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria
Nanxi Wang (2016)
10.1042/BST20160076
Selection platforms for directed evolution in synthetic biology
Pedro A. G. Tizei (2016)
10.1038/nature10403
Synthetic chromosome arms function in yeast and generate phenotypic diversity by design
J. Dymond (2011)
10.1016/j.cels.2016.06.009
Genomic Recoding Broadly Obstructs the Propagation of Horizontally Transferred Genetic Elements.
N. Ma (2016)
10.1016/j.cbpa.2010.09.013
Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications.
J. A. Johnson (2010)
10.1098/rsob.160287
Genome recoding by tRNA modifications
Francesca Tuorto (2016)
10.1093/MOLBEV/MSW166
Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum
Stephen M. Heaphy (2016)
10.1002/anie.201207567
Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation.
Caroline Aldag (2013)
10.1038/NCHEMBIO719
A network of orthogonal ribosome·mRNA pairs
O. Rackham (2005)
10.1038/srep39920
Expanding the genetic code of Salmonella with non-canonical amino acids
Qinglei Gan (2016)
10.1093/NAR/GKH959
Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
C. Koehrer (2004)
10.1021/cb200542j
Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
Angela R Parrish (2012)
10.1021/ja104609m
Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair
Susan M. Hancock (2010)
10.1016/j.jmb.2015.09.003
Overcoming Challenges in Engineering the Genetic Code.
M. Lajoie (2016)
10.1016/j.cell.2016.09.022
Beyond the Triplet Code: Context Cues Transform Translation
G. Brar (2016)
10.1021/ja510695g
Evolving tRNA(Sec) for efficient canonical incorporation of selenocysteine.
R. Thyer (2015)
10.1016/j.cub.2016.06.064
An Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons
Kristína Záhonová (2016)
10.1002/cbic.201402083
Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases
Chenguang Fan (2014)
10.1093/OXFORDJOURNALS.MOLBEV.A025832
Widespread and ancient distribution of a noncanonical genetic code in diplomonads.
P. Keeling (1997)
10.1126/science.aaf4557
Design of a synthetic yeast genome
S. Richardson (2017)
10.1073/pnas.1309584110
Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells
Abhishek Chatterjee (2013)
10.1002/anie.201308137
Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells.
H. Xiao (2013)
10.1038/srep33447
Towards Biocontained Cell Factories: An Evolutionarily Adapted Escherichia coli Strain Produces a New-to-nature Bioactive Lantibiotic Containing Thienopyrrole-Alanine
Anja Kuthning (2016)
10.1021/JA035141Q
Enhanced D-amino acid incorporation into protein by modified ribosomes.
L. Dedkova (2003)
10.1126/science.1241459
Genomically Recoded Organisms Expand Biological Functions
M. Lajoie (2013)
10.1038/nn1932
Genetically encoding unnatural amino acids for cellular and neuronal studies
Wenyuan Wang (2007)
10.1002/cbic.201600448
Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in Escherichia coli
Yiyan Wang (2016)
10.1126/science.1207203
Expanding the Genetic Code of Escherichia coli with Phosphoserine
H. Park (2011)
10.1126/SCIENCE.1084772
An Expanded Eukaryotic Genetic Code
J. Chin (2003)
10.1038/nsmb.3330
Position dependent termination and widespread obligatory frameshifting in Euplotes translation
A. V. Lobanov (2017)
10.1002/cbic.201402104
A Bacterial Strain with a Unique Quadruplet Codon Specifying Non‐native Amino Acids
Abhishek Chatterjee (2014)
10.1038/nature14862
Protein synthesis by ribosomes with tethered subunits
C. Orelle (2015)
10.1128/MCB.16.3.907
Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene.
H. J. Drabkin (1996)
10.1093/nar/gkw898
Transfer RNAs with novel cloverleaf structures
Takahito Mukai (2017)
10.1016/j.bbrc.2008.04.164
Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases.
Takahito Mukai (2008)
Innovative Technology for Recombinant Protein Production Using Engineered E. coli Genetic Codes
坂本 健作 (2016)
10.1101/cshperspect.a023770
Alternative Watson-Crick Synthetic Genetic Systems.
S. Benner (2016)
10.1093/nar/gkw948
Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment
Wil Biddle (2016)
10.1126/SCIENCE.1057718
Enlarging the Amino Acid Set of Escherichia coli by Infiltration of the Valine Coding Pathway
V. Döring (2001)
10.1021/acs.biochem.5b01185
Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
B. J. Rauch (2016)
10.1002/bit.26239
Translation system engineering in Escherichia coli enhances non‐canonical amino acid incorporation into proteins
Rui Gan (2017)
10.1021/acs.biochem.6b00157
Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase.
C. Richardson (2016)
10.1038/nchembio.657
RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
D. Johnson (2011)
10.1093/nar/gkx415
Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA
Y. H. Lau (2017)
10.1093/nar/gkq080
Functional replacement of the endogenous tyrosyl-tRNA synthetase–tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion
Fumie Iraha (2010)
10.1186/s12862-015-0350-0
Ancient horizontal gene transfer and the last common ancestors
G. Fournier (2015)
10.1002/anie.201000465
A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli.
W. Wan (2010)
10.1073/PNAS.94.19.10092
Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo.
D. Liu (1997)
10.1021/BI060986A
Construction of modified ribosomes for incorporation of D-amino acids into proteins.
L. Dedkova (2006)
10.1038/341164A0
The codon CUG is read as serine in an asporogenic yeast Candida cylindracea
Y. Kawaguchi (1989)
10.1126/SCIENCE.1060077
Expanding the Genetic Code of Escherichia coli
L. Wang (2001)
10.1002/bies.201600221
Nuclear codon reassignments in the genomics era and mechanisms behind their evolution.
M. Kollmar (2017)
10.1038/ncomms14568
Expanding the genetic code of Mus musculus
S. Han (2017)
10.1073/pnas.1602733113
Recombinant thiopeptides containing noncanonical amino acids
Xiaozhou Luo (2016)
10.1021/bi2016124
β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids.
Larisa M. Dedkova (2012)
10.1073/PNAS.95.14.8165
Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons.
K. Ito (1998)
10.1093/nar/gkt842
Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria
J. Ling (2014)
10.1007/BF00327411
A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for tRNA nonsense suppressors
S. Rydén (2004)
10.1093/NAR/26.22.5017
Universal rules and idiosyncratic features in tRNA identity.
R. Giegé (1998)
10.1093/nar/gkw608
An integrated, structure- and energy-based view of the genetic code
H. Grosjean (2016)
10.1038/nature02895
Direct charging of tRNACUA with pyrrolysine in vitro and in vivo
S. Blight (2004)
10.1021/bi4000244
A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.
Abhishek Chatterjee (2013)
10.1038/nature09918
The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine
Marsha A. Gaston (2011)
10.1021/bi802178k
Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris.
T. Young (2009)
10.1038/ncomms9168
Robust production of recombinant phosphoproteins using cell-free protein synthesis
J. P. Oza (2015)
10.1126/science.aaf3639
Design, synthesis, and testing toward a 57-codon genome
Nili Ostrov (2016)
10.1016/j.bbagen.2017.03.003
A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNAHis pair.
M. Englert (2017)
10.1016/j.bbagen.2017.02.017
An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
Byeong Sung Lee (2017)
10.1021/cb300229q
Release Factor One Is Nonessential in Escherichia coli
D. B. Johnson (2012)
10.1021/ja2054034
Expanding the Genetic Code of an Animal
S. Greiss (2011)
10.1038/314188A0
Deviation from the universal code shown by the gene for surface protein 51A in Paramecium
J. Preer (1985)
10.1093/NAR/GKF589
Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.
K. Sakamoto (2002)
10.1038/nature07611
Pyrrolysyl-tRNA synthetase:tRNAPyl structure reveals the molecular basis of orthogonality
Kayo Nozawa (2009)
10.1074/JBC.M003696200
A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*
Fumie Hamano-Takaku (2000)
10.1038/nchembio.2002
Addicting diverse bacteria to a noncanonical amino acid.
D. Tack (2016)
10.1074/jbc.M706076200
Methylation of Bacterial Release Factors RF1 and RF2 Is Required for Normal Translation Termination in Vivo*
L. Mora (2007)
10.1002/CHIN.201220265
Reprogramming the Genetic Code: From Triplet to Quadruplet Codes
K. Wang (2012)
10.1006/JMBI.1994.1094
Transfer RNA mutation and the malleability of the genetic code.
D. W. Schultz (1994)
10.1128/mBio.00561-17
RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea
Takahito Mukai (2017)
10.1371/journal.pone.0012206
Genetic Code Mutations: The Breaking of a Three Billion Year Invariance
W. Mat (2010)
10.1002/cbic.201400075
Towards Reassigning the Rare AGG Codon in Escherichia coli
Y. Zeng (2014)
10.1038/nbt.3372
Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids
Miriam Amiram (2015)
10.1038/nbt1314
Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion
K. Wang (2007)
10.1016/j.febslet.2012.08.031
Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion
I. U. Heinemann (2012)
10.1093/nar/gkr183
Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion
H. Wang (2011)
10.1007/978-4-431-68302-5_6
Recent evidence for evolution of the genetic code.
S. Osawa (1992)
10.1002/anie.201502868
Chemical Evolution of a Bacterial Proteome.
Michael Georg Hoesl (2015)
10.1128/JB.94.3.712-718.1967
Inhibition of Escherichia coli B by homoarginine.
G. Peyru (1967)
10.1002/anie.201300754
Red-light-controlled protein-RNA crosslinking with a genetically encoded furan.
M. Schmidt (2013)
10.1002/cbic.201402708
Improving Cell‐Free Protein Synthesis through Genome Engineering of Escherichia coli Lacking Release Factor 1
S. H. Hong (2015)
10.1002/anie.201303477
Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana.
Fahui Li (2013)
10.1002/cbic.201300444
Transfer RNA Misidentification Scrambles Sense Codon Recoding
R. Krishnakumar (2013)
10.1038/nchembio.1549
An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center.
Naohiro Terasaka (2014)
10.1074/JBC.M501458200
Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies*
Y. Zhang (2005)
10.1016/0958-1669(95)80082-4
Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli.
J. Kane (1995)
10.1073/pnas.1419737111
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution
Li-Tao Guo (2014)
10.1093/nar/gku691
Engineering the elongation factor Tu for efficient selenoprotein synthesis
Ken-ichi Haruna (2014)
10.1006/JMBI.1996.0428
Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates.
H. Dong (1996)
10.1038/nchembio.1823
Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
Daniel T. Rogerson (2015)
10.1371/journal.pone.0057035
Nonsense and Sense Suppression Abilities of Original and Derivative Methanosarcina mazei Pyrrolysyl-tRNA Synthetase-tRNAPyl Pairs in the Escherichia coli BL21(DE3) Cell Strain
Keturah A. Odoi (2013)
10.1073/pnas.1212454109
Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli
Abhishek Chatterjee (2012)
10.1021/sb400140t
Cell-free Protein Synthesis from a Release Factor 1 Deficient Escherichia coli Activates Efficient and Multiple Site-specific Nonstandard Amino Acid Incorporation
S. H. Hong (2014)
Investigations into the Molecular Mechanisms of Bacterial Pathogen-Host Interactions: Construction of a Dual Plasmid System for Incorporation of Unnatural Amino Acids into Pseudomonas syringae pv. tomato DC3000
Scotty D Raber (2015)
10.1073/PNAS.0401517101
An expanded genetic code with a functional quadruplet codon.
J. Anderson (2004)
10.1128/MCB.10.4.1633
A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase.
H. Edwards (1990)
10.1073/pnas.2434959100
Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants
N. Costantino (2003)
10.1038/nature20124
Defining synonymous codon compression schemes by genome recoding
K. Wang (2016)
10.1021/JA0350076
Breaking the degeneracy of the genetic code.
I. Kwon (2003)
10.1002/j.1460-2075.1988.tb03337.x
Mutagenesis at the mRNA decoding site in the 16S ribosomal RNA using the specialized ribosome system in Escherichia coli.
A. S. Hui (1988)
10.1038/nature08817
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
Heinz Neumann (2010)
10.1371/journal.pone.0009354
Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis
F. Wang (2010)
10.1038/nature20560
The pathway to GTPase activation of elongation factor SelB on the ribosome
N. Fischer (2016)
10.1126/science.1250691
Stop codon reassignments in the wild
N. Ivanova (2014)
10.1021/JA045673M
A phage display system with unnatural amino acids.
F. Tian (2004)
10.1002/anie.201300531
A facile strategy for selective incorporation of phosphoserine into histones.
Sangsik Lee (2013)
10.1002/ange.201506311
Ribosome Subunit Stapling for Orthogonal Translation in E.  coli
Stephen D. Fried (2015)
10.1126/science.173.3994.340
Ribosome-Catalyzed Polyester Formation
S. Fahnestock (1971)
10.1093/emboj/17.17.5201
Copy number control of IncIα plasmid ColIb‐P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site
K. Asano (1998)
10.1021/ja403503m
Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy.
J. Mills (2013)
10.1016/j.cell.2016.01.001
Imaginary Proteins Made Real
L. Doyle (2016)
10.1038/353273A0
Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3′ untranslated region
M. J. Berry (1991)
10.1006/JMBI.1993.1269
Phenotypic suppression by incorporation of an alien amino acid.
B. Lemeignan (1993)
10.1128/JB.00195-12
Efficient decoding of the UAG triplet as a full-fledged sense codon enhances the growth of a prfA-deficient strain of Escherichia coli.
Kazumasa Ohtake (2012)
10.1021/JA0626281
Design of a bacterial host for site-specific incorporation of p-bromophenylalanine into recombinant proteins.
I. Kwon (2006)
10.1021/JA075557U
Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system.
Y. Doi (2007)
10.1038/nchembio.73
Genetically encoding N(epsilon)-acetyllysine in recombinant proteins.
Heinz Neumann (2008)
10.1073/pnas.1605856113
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli
M. Napolitano (2016)
10.4161/15476286.2014.992281
Convergent evolution of AUA decoding in bacteria and archaea
T. Suzuki (2014)
10.1038/nchembio.586
D-Ornithine coopts pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine.
Susan E. Cellitti (2011)
10.1093/nar/gkq521
Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA
R. A. Hughes (2010)
10.1186/s13059-017-1217-z
Optimizing complex phenotypes through model-guided multiplex genome engineering
G. Kuznetsov (2017)
10.1093/gbe/evu044
Mutations Enabling Displacement of Tryptophan by 4-Fluorotryptophan as a Canonical Amino Acid of the Genetic Code
A. C. Yu (2014)
10.1038/nchembio.1339
Upgrading protein synthesis for synthetic biology.
P. O’Donoghue (2013)
10.1101/070417
Assembly of Radically Recoded E. coli Genome Segments
J. Norville (2016)
10.1021/ja3069177
Engineered rRNA enhances the efficiency of selenocysteine incorporation during translation.
R. Thyer (2013)
10.1016/j.chembiol.2008.10.004
Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification.
Tatsuo Yanagisawa (2008)
10.1002/1873-3468.12333
Expanding the genetic code of Escherichia coli with phosphotyrosine
C. Fan (2016)
10.1038/nature09929
A System for the Continuous Directed Evolution of Biomolecules
K. Esvelt (2011)
10.1002/cbic.201000295
Parallel Incorporation of Different Fluorinated Amino Acids: On the Way to “Teflon” Proteins
L. Merkel (2010)
10.1038/nrmicro3568
Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology
J. Ling (2015)
10.1186/1471-2148-10-327
Complex phylogenetic distribution of a non-canonical genetic code in green algae
E. Cocquyt (2010)
10.1002/1522-2675(20000906)83:9<2277::AID-HLCA2277>3.0.CO;2-L
A New Orthogonal Suppressor tRNA/Aminoacyl‐tRNA Synthetase Pair for Evolving an Organism with an Expanded Genetic Code
M. Pastrnak (2000)
[Facile Recoding of Selenocysteine in Nature].
Takahito Mukai (2016)
10.1021/ac303089v
Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis.
Jihyo Kim (2013)
10.1146/annurev.biochem.052308.105824
Adding new chemistries to the genetic code.
C. Liu (2010)
10.1038/msb4100090
Towards synthesis of a minimal cell
A. Forster (2006)
10.1016/j.febslet.2015.06.039
A synthetic tRNA for EF‐Tu mediated selenocysteine incorporation in vivo and in vitro
C. Miller (2015)
10.1038/nature19791
Accurate de novo design of hyperstable constrained peptides
Gaurav Bhardwaj (2016)
10.1186/s12915-017-0353-y
Nuclear genetic codes with a different meaning of the UAG and the UAA codon
T. Pánek (2017)
10.1093/nar/gkq707
Codon reassignment in the Escherichia coli genetic code
Takahito Mukai (2010)
10.1038/srep09762
Protein stabilization utilizing a redefined codon
Kazumasa Ohtake (2015)
10.1038/nmeth.4032
Genetic code expansion for multiprotein complex engineering
Christine Koehler (2016)
10.1016/J.JMB.2007.05.017
An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae.
S. Chen (2007)
10.1016/j.cbpa.2016.08.001
The expanding world of DNA and RNA.
T. Chen (2016)
10.1016/j.febslet.2012.09.033
Near‐cognate suppression of amber, opal and quadruplet codons competes with aminoacyl‐tRNAPyl for genetic code expansion
P. O’Donoghue (2012)
10.1073/pnas.1603941113
Comparative genomics of biotechnologically important yeasts
R. Riley (2016)
10.1021/jacs.6b01023
In Vivo Biosynthesis of a β-Amino Acid-Containing Protein.
Clarissa Melo Czekster (2016)
10.1146/annurev-biochem-060713-035737
Expanding and reprogramming the genetic code of cells and animals.
J. Chin (2014)
10.1038/nmeth.1971
Genome-scale promoter engineering by Co-Selection MAGE
H. Wang (2012)
10.1038/nature14095
Recoded organisms engineered to depend on synthetic amino acids
A. J. Rovner (2015)
10.1038/nature14121
Biocontainment of genetically modified organisms by synthetic protein design
D. J. Mandell (2015)
10.1016/j.cell.2016.06.020
Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination
Estienne C. Swart (2016)
10.1038/nchembio.2312
An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes.
James S. Italia (2017)
10.1038/nchembio.1043
Expanding the genetic code of Drosophila melanogaster.
A. Bianco (2012)
10.1038/nbt.2714
Directed evolution of genetic parts and circuits by compartmentalized partnered replication
Jared W Ellefson (2014)
10.1038/nchem.1919
Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET
K. Wang (2014)
10.1038/nbt.2860
Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal
T. Elliott (2014)
10.1038/nrg3927
Methods for the directed evolution of proteins
Michael S. Packer (2015)
10.1093/jb/mvs153
A simple system for expression of proteins containing 3-azidotyrosine at a pre-determined site in Escherichia coli.
Akiyoshi Ikeda-Boku (2013)
10.1038/nchembio.1450
Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness
M. Hammerling (2014)
10.3390/ijms16036513
Recent Developments of Engineered Translational Machineries for the Incorporation of Non-Canonical Amino Acids into Polypeptides
Naohiro Terasaka (2015)
10.1093/OXFORDJOURNALS.JBCHEM.A022221
Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code.
S. Ohno (1998)
10.1007/s11693-015-9184-8
Recent advances and versatility of MAGE towards industrial applications
Vijai Singh (2015)
10.1534/genetics.110.119016
The Distinction Between Recoding and Codon Reassignment
J. Atkins (2010)
10.1073/PNAS.88.9.3758
UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus.
F. Meyer (1991)
10.1021/acschembio.5b00230
Incorporation of Unnatural Amino Acids in Response to the AGG Codon.
Byeong Sung Lee (2015)
10.1002/anie.201301094
A tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli.
Abhishek Chatterjee (2013)
10.1021/ja800894n
New methods enabling efficient incorporation of unnatural amino acids in yeast.
Q. Wang (2008)
10.1016/j.biochi.2014.11.014
Ribosome rescue systems in bacteria.
H. Himeno (2015)
10.1073/pnas.1507741112
Exploring the potential impact of an expanded genetic code on protein function
H. Xiao (2015)
10.1111/1751-7915.12398
Xenomicrobiology: a roadmap for genetic code engineering
C. G. Acevedo-Rocha (2016)
10.1038/314185A0
Does Paramecium primaurelia use a different genetic code in its macronucleus?
F. Caron (1985)
10.1093/nar/gkv787
Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli
Takahito Mukai (2015)



This paper is referenced by
10.14348/molcells.2019.0078
Site-Specific Labeling of Proteins Using Unnatural Amino Acids
K. Lee (2019)
10.1007/978-981-15-0081-7
Advances in Synthetic Biology
Linda J. Kahl (2016)
10.1101/829028
Structural robustness affects the engineerability of aminoacyl-tRNA synthetases for genetic code expansion
Katherine T. Grasso (2019)
10.3389/fphar.2019.00248
The Application of Cell-Free Protein Synthesis in Genetic Code Expansion for Post-translational Modifications
Suryawanshi Venkat Shivaji (2019)
10.3390/molecules23071662
Recent Development of Genetic Code Expansion for Posttranslational Modification Studies
H. Chen (2018)
10.3390/ijms21207793
Rational Design of Aptamer-Tagged tRNAs
Takahito Mukai (2020)
10.1073/pnas.1715578115
Deciphering the reading of the genetic code by near-cognate tRNA
S. Blanchet (2018)
10.3390/ijms21030705
Extremely Low Leakage Expression Systems Using Dual Transcriptional-Translational Control for Toxic Protein Production
Y. Kato (2020)
10.3389/fmicb.2018.00657
Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics
Maike Bartholomae (2018)
10.1016/j.cbpa.2018.07.014
Upgrading aminoacyl-tRNA synthetases for genetic code expansion.
Oscar Vargas-Rodriguez (2018)
10.3390/genes11101173
A Label-Free Assay for Aminoacylation of tRNA
H. Gamper (2020)
Isopeptide Ligations Catalyzed by Streptococcus Suis Sortase A
Sarah Bowersox (2019)
10.3390/molecules25184106
Click Decoration of Bombyx mori Silk Fibroin for Cell Adhesion Control
H. Teramoto (2020)
10.3390/life10060081
Universal Codons with Enrichment from GC to AU Nucleotide Composition Reveal a Chronological Assignment from Early to Late Along with LUCA Formation
A. Gospodinov (2020)
10.1021/acschembio.9b00088
Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
Hui Si Kwok (2019)
10.1371/journal.pcbi.1006101
Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases
F. Kaiser (2018)
10.1021/acs.chemrev.8b00253
Achieving Controlled Biomolecule–Biomaterial Conjugation
C. Spicer (2018)
10.1128/mBio.01654-17
Refactoring the Genetic Code for Increased Evolvability
G. Pines (2017)
University of Groningen Expanding the Genetic Code of and to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics Bartholomae,
Maike Bartholomae (2018)
10.1016/j.cbpa.2020.07.009
Unremitting progresses for phosphoprotein synthesis.
Hua-Zhen Duan (2020)
10.1016/j.plrev.2019.06.005
What would a synthetic connectome look like?
I. Rabinowitch (2019)
10.1093/nar/gkz831
Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies
M. A. Martinez (2019)
10.1002/cbic.201800817
A “Quenchergenic” Chemoselective Protein Labeling Strategy
P. S. Addy (2019)
10.3389/fbioe.2020.598577
Using Genetic Code Expansion for Protein Biochemical Studies
Christina Z. Chung (2020)
10.1038/s41467-019-12916-w
Expanding the limits of the second genetic code with ribozymes
Joongoo Lee (2019)
10.1038/s41598-019-47268-4
Inducible orthogonal aminoacylation demonstrates that charging is required for mitochondrial tRNA import in Trypanosoma brucei
Jonathan L. Huot (2019)
10.1007/s11816-019-00562-z
Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing
R. Shelake (2019)
10.3390/ijms20081929
Aminoacyl-tRNA Synthetases and tRNAs for an Expanded Genetic Code: What Makes them Orthogonal?
S. Melnikov (2019)
10.1007/s00294-017-0754-z
Synthetic genome recoding: new genetic codes for new features
J. Kuo (2017)
10.1007/978-981-15-0081-7_14
Expansion of the Genetic Code
Nisarg Gohil (2020)
10.3389/fpls.2020.00210
Transgene Biocontainment Strategies for Molecular Farming
M. Clark (2020)
10.1007/s42994-020-00030-1
Genome recoding strategies to improve cellular properties: mechanisms and advances
Tanya Singh (2020)
See more
Semantic Scholar Logo Some data provided by SemanticScholar